
ToscaWidgets2 Documentation
Release 2.2.9

Alessandro Molina

Sep 12, 2020

Contents

1 Content 3
1.1 Getting Started . 3

1.1.1 Enabling ToscaWidgets . 3
1.1.2 Configuration Options . 4

1.2 Widgets . 5
1.2.1 Using Widgets . 5
1.2.2 Resources . 10

1.3 Forms . 12
1.3.1 Form . 12
1.3.2 Validating Forms . 15
1.3.3 Form Layout . 17
1.3.4 Bultin Form Fields . 19

1.4 Validation . 26
1.4.1 Validators . 27
1.4.2 Custom Validators . 28
1.4.3 Internationalization . 29
1.4.4 Builtin Validators . 30

1.5 Javascript Integration . 32
1.5.1 Javascript on Display . 33
1.5.2 Javascript Callbacks . 34
1.5.3 Builtin Javascript Helpers . 34

1.6 Design . 36
1.6.1 Widget Overview . 36
1.6.2 Widget Hierarchy . 38
1.6.3 Template . 40
1.6.4 Non-template Output . 40
1.6.5 Resources . 40
1.6.6 Declarative Instantiation . 41
1.6.7 Widgets as Controllers . 42
1.6.8 Validation . 43
1.6.9 General Considerations . 47

1.7 Changelog . 47
1.7.1 2.3.0 . 47
1.7.2 2.2.9 . 48
1.7.3 2.2.7 . 48
1.7.4 2.2.6 . 48

i

1.7.5 2.2.5 . 48
1.7.6 2.2.4 . 48
1.7.7 2.2.3 . 48
1.7.8 2.2.2 . 48
1.7.9 2.2.1 . 49
1.7.10 2.2.0.8 . 49
1.7.11 2.2.0.7 . 49
1.7.12 2.2.0.6 . 49
1.7.13 2.2.0.5 . 49
1.7.14 2.2.0.4 . 49
1.7.15 2.2.0.3 . 49
1.7.16 2.2.0.2 . 50
1.7.17 2.2.0.1 . 50
1.7.18 2.2.0 . 50
1.7.19 2.1.6 . 51
1.7.20 2.1.5 . 51
1.7.21 2.1.4 . 51
1.7.22 2.1.3 . 51

2 Online Resources 59

3 Indices and tables 61

Python Module Index 63

Index 65

ii

ToscaWidgets2 Documentation, Release 2.2.9

ToscaWidgets is a HTML Widgets generation and management library.

It allows to create reusable widgets to show in web pages and manages the dependencies of the widgets like Javascript
and CSS that those widgets might need to properly display and behave

class HelloWidget(twc.Widget):
inline_engine_name = "kajiki"
template = """

<i>Hello ${w.name}</i>
"""

name = twc.Param(description="Name of the greeted entity")

Widgets can then be displayed within your web pages to create reusable components or forms:

>>> HelloWidget(name="World").display()
<i>Hello World</i>

Widgets have support for:

• Templating based on Kajiki, Mako, Genshi and Jinja2

• Resources, to bring in Javascript and CSS dependencies they need.

• Parameters, to configure their behaviour.

• Validation, to ensure proper data was provided and show validation errors to users.

• Hooks, to drive their behaviour at runtime.

ToscaWidgets2 also provides a tw2.forms package with ready to use widgets to display Forms with input validation.

Contents 1

ToscaWidgets2 Documentation, Release 2.2.9

2 Contents

CHAPTER 1

Content

1.1 Getting Started

1.1.1 Enabling ToscaWidgets

ToscaWidgets is designed to work within a web request life cycle, so some of its features rely on the a current request
object to be able to work a keep track of the state of widgets or resources for the whole duration of the request.

For this reason, to start using ToscaWidgets you need to wrap your WSGI application in the tw2.core.
middleware.TwMiddleware, which is also used to configure ToscaWidgets itself:

def application(environ, start_response):
response_headers = [('Content-type', 'text/plain')]
start_response("200 OK", response_headers)
return [b"Hello World!"]

from tw2.core.middleware import TwMiddleware
application = TwMiddleware(application)

from wsgiref.simple_server import make_server
httpd = make_server('', 8000, application)
print("Serving on port 8000...")
httpd.serve_forever()

You can also provide all options available to configure ToscaWidgets (those listed in tw2.core.middleware.
Config) to TwMiddleware as keyword arguments to change ToscaWidgets configuration:

from tw2.core.middleware import TwMiddleware
application = TwMiddleware(application, debug=False)

Note: Debug mode is enabled by default in ToscaWidgets, so make sure you provide debug=False on production
to leverage templates caching and other speedups.

3

ToscaWidgets2 Documentation, Release 2.2.9

Now that the middleare is in place, you can easily display any widget you want into your application:

from tw2.forms import SingleSelectField

def application(environ, start_response):
widget = SingleSelectField(options=[1, 2, 3])
output = widget.display()

response_headers = [('Content-type', 'text/html')]
start_response("200 OK", response_headers)
return [b"<h1>Hello World!</h1>",

b"<p>Pick one of the options</p>",
output.encode('ascii')]

from tw2.core.middleware import TwMiddleware
application = TwMiddleware(application)

from wsgiref.simple_server import make_server
httpd = make_server('', 8000, application)
print("Serving on port 8000...")
httpd.serve_forever()

See Widgets and Forms to get started creating widgets and forms.

class tw2.core.middleware.TwMiddleware(app, controllers=None, **config)
ToscaWidgets middleware

This performs three tasks:

• Clear request-local storage before and after each request. At the start of a request, a reference to the
middleware instance is stored in request-local storage.

• Proxy resource requests to ResourcesApp

• Inject resources

1.1.2 Configuration Options

class tw2.core.middleware.Config(**kw)
ToscaWidgets Configuration Set

translator The translator function to use. (default: no-op)

default_engine The main template engine in use by the application. Widgets with no parent will display
correctly inside this template engine. Other engines may require passing displays_on to Widget.
display(). (default:string)

inject_resoures Whether to inject resource links in output pages. (default: True)

inject_resources_location A location where the resources should be injected. (default: head)

serve_resources Whether to serve static resources. (default: True)

res_prefix The prefix under which static resources are served. This must start and end with a slash. (default:
/resources/)

res_max_age The maximum time a cache can hold the resource. This is used to generate a Cache-control
header. (default: 3600)

serve_controllers Whether to serve controller methods on widgets. (default: True)

4 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

controller_prefix The prefix under which controllers are served. This must start and end with a slash. (default:
/controllers/)

bufsize Buffer size used by static resource server. (default: 4096)

params_as_vars Whether to present parameters as variables in widget templates. This is the behaviour from
ToscaWidgets 0.9. (default: False)

debug Whether the app is running in development or production mode. (default: True)

validator_msgs A dictionary that maps validation message names to messages. This lets you override validation
messages on a global basis. (default: {})

encoding The encoding to decode when performing validation (default: utf-8)

auto_reload_templates Whether to automatically reload changed templates. Set this to False in production for
efficiency. If this is None, it takes the same value as debug. (default: None)

preferred_rendering_engines List of rendering engines in order of preference. (default:
[‘mako’,’genshi’,’jinja’,’kajiki’])

strict_engine_selection If set to true, TW2 will only select rendering engines from within your pre-
ferred_rendering_engines, otherwise, it will try the default list if it does not find a template within your
preferred list. (default: True)

rendering_engine_lookup A dictionary of file extensions you expect to use for each type of template engine.
Default:

{
'mako':['mak', 'mako'],
'genshi':['genshi', 'html'],
'jinja':['jinja', 'html'],
'kajiki':['kajiki', 'html'],

}

script_name A name to prepend to the url for all resource links (different from res_prefix, as it may be shared
across and entire wsgi app. (default: ‘’)

1.2 Widgets

Widgets are small self-contained components that can be reused across the same web page or across multiple pages.

A widget typically has a state (its value) a configuration (its params) a template that describes what should be displayed,
one ore more resources (javascript or CSS) needed during display and might have some logic that has to be executed
every time the widget is displayed.

1.2.1 Using Widgets

A typical widget will look like:

class MyWidget(tw2.core.Widget):
template = "mypackage.widgets.templates.mywidget"

Which will look for a template named mywidget.html into the templates python package within the widgets
package of the mypackage application. The extension expected for the file depends on the template engine used:

• mako: .mako

1.2. Widgets 5

ToscaWidgets2 Documentation, Release 2.2.9

• kajiki: .kajiki

• jinja: .jinja

• genshi: .genshi

The template engine used to render the provided template depends on the default_engine option provided when
configuring tw2.core.middleware.TwMiddleware.

In case you don’t want to save the template into a separate file you can also set the inline_engine_name option
to one of the template engines and provide the template as a string:

class HelloWidgetTemplate(tw2.core.Widget):
inline_engine_name = "kajiki"
template = """

<i>Hello ${i}, </i>
"""

Displaying a widget is as simple as calling the Widget.display():

HelloWidgetTemplate.display()

Widget value

Each Widget has a special paramter, which is value. This parameter contains the current state of the widget.
Value will usually be a single value or a dictionary containing multiple values (in case of tw2.core.widgets.
CompoundWidget).

You can use the value to drive what the widget should show once displayed:

class HelloWidgetValue(tw2.core.Widget):
inline_engine_name = "kajiki"
template = """

<i>Hello ${w.value}</i>
"""

>>> HelloWidgetValue.display(value='World')
Markup('<i>Hello World</i>')

tw2.core.CompoundWidget can contain multiple subwidgets (children) and their value is typically a dict with
values for each one of the children:

class CompoundHello(tw2.core.CompoundWidget):
inline_engine_name = "kajiki"
template = """

<div py:for="c in w.children">
${c.display()}

</div>
"""

name = HelloWidgetValue()
greeter = tw2.core.Widget(inline_engine_name="kajiki",

template="From ${w.value}")

>>> CompoundHello(value=dict(name="Mario", greeter="Luigi")).display()
Markup('<div>Hello Mario</div><div>From Luigi</div>')

Children of a compound widget (like Forms) can be accessed both as a list iterating over w.children or by name
using w.children.childname.

6 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

Parameters

Widgets might require more information than just their value to display, or might allow more complex kind of config-
urations. The options required to configure the widget are provided through tw2.core.Param objects that define
which options each widget supports.

If you want your widget to be configurable, you can make available one or more options to your Widget and allow any
user to set them as they wish:

class HelloWidgetParam(tw2.core.Widget):
inline_engine_name = "kajiki"
template = """

<i>Hello ${w.name}</i>
"""

name = tw2.core.Param(description="Name of the greeted entity")

The parameters can be provided any time by changing configuration of a widget:

>>> w = HelloWidgetParam(name="Peach")
>>> w.display()
Markup('<i>Hello Peach</i>')
>>> w2 = w(name="Toad")
>>> w2.display()
Markup('<i>Hello Toad</i>')

Or can be provided at display time itself:

>>> HelloWidgetParam.display(name="Peach")
Markup('<i>Hello Peach</i>')

Deferred Parameters

When a widget requires a parameter that is not available before display time. That parameter can be set to a tw2.
core.Deferred object.

Deferred objects will accept any callable and before the widget is displayed the callable will be executed to fetch the
actual value for the widget:

>>> singleselect = SingleSelectField(options=tw2.core.Deferred(lambda: [1,2,3]))
>>> singleselect.options
<Deferred: <Deferred>>
>>> singleselect.display()
Markup('<select ><option value=""></option>\n <option value="1">1</option>\n <option
→˓value="2">2</option>\n <option value="3">3</option>\n</select>')

Deferred is typically used when loading data from the content of a database to ensure that the content is the one
available at the time the widget is displayed and not the one that was available when the application started:

>>> userpicker = twf.SingleSelectField(
... options=twc.Deferred(lambda: [(u.user_id, u.display_name) for u in model.
→˓DBSession.query(model.User)])
...)
>>> userpicker.display()
Markup('<select ><option value=""></option>\n <option value="1">Example manager</
→˓option>\n <option value="2">Example editor</option>\n</select>')

1.2. Widgets 7

ToscaWidgets2 Documentation, Release 2.2.9

Builtin Widgets

The tw2.core packages comes with the basic buildin blocks needed to create your own custom widgets.

class tw2.core.widgets.Widget(**kw)
Base class for all widgets.

classmethod req(**kw)
Generate an instance of the widget.

Return the validated widget for this request if one exists.

classmethod post_define()
This is a class method, that is called when a subclass of this Widget is created. Process static configuration
here. Use it like this:

class MyWidget(LeafWidget):
@classmethod
def post_define(cls):

id = getattr(cls, 'id', None)
if id and not id.startswith('my'):

raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an abstract class. There is no need to
call super(), the metaclass will do this automatically.

classmethod get_link()
Get the URL to the controller . This is called at run time, not startup time, so we know the middleware if
configured with the controller path. Note: this function is a temporary measure, a cleaner API for this is
planned.

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

iteritems()
An iterator which will provide the params of the widget in key, value pairs.

controller_path = <functools.partial object>

add_call = <functools.partial object>

display = <functools.partial object>

generate_output(displays_on)
Generate the actual output text for this widget.

By default this renders the widget’s template. Subclasses can override this method for purely programmatic
output.

displays_on The name of the template engine this widget is being displayed inside.

Use it like this:

class MyWidget(LeafWidget):
def generate_output(self, displays_on):

return "{1}".format(self.attrs, self.text)

8 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

classmethod validate(params, state=None)
Validate form input. This should always be called on a class. It either returns the validated data, or raises
a ValidationError exception.

class tw2.core.widgets.LeafWidget(**kw)
A widget that has no children; this is the most common kind, e.g. form fields.

class tw2.core.widgets.CompoundWidget(**kw)
A widget that has an arbitrary number of children, this is common for layout components, such as tw2.forms.
TableLayout.

classmethod post_define()
Check children are valid; update them to have a link to the parent.

prepare()
Propagate the value for this widget to the children, based on their id.

class tw2.core.widgets.RepeatingWidget(**kw)
A widget that has a single child, which is repeated an arbitrary number of times, such as tw2.forms.
GridLayout.

classmethod post_define()
Check child is valid; update with link to parent.

prepare()
Propagate the value for this widget to the children, based on their index.

class tw2.core.widgets.DisplayOnlyWidget(**kw)
A widget that has a single child. The parent widget is only used for display purposes; it does not affect value
propagation or validation. This is used by widgets like tw2.forms.FieldSet.

classmethod post_define()
This is a class method, that is called when a subclass of this Widget is created. Process static configuration
here. Use it like this:

class MyWidget(LeafWidget):
@classmethod
def post_define(cls):

id = getattr(cls, 'id', None)
if id and not id.startswith('my'):

raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an abstract class. There is no need to
call super(), the metaclass will do this automatically.

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.core.widgets.Page(**kw)
An HTML page. This widget includes a request() method that serves the page.

classmethod post_define()
This is a class method, that is called when a subclass of this Widget is created. Process static configuration
here. Use it like this:

1.2. Widgets 9

ToscaWidgets2 Documentation, Release 2.2.9

class MyWidget(LeafWidget):
@classmethod
def post_define(cls):

id = getattr(cls, 'id', None)
if id and not id.startswith('my'):

raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an abstract class. There is no need to
call super(), the metaclass will do this automatically.

class tw2.core.Param(description=Default, default=Default, request_local=Default, at-
tribute=Default, view_name=Default)

A parameter for a widget.

description A string to describe the parameter. When overriding a parameter description, the string can include
$$ to insert the previous description.

default The default value for the parameter. If no defalt is specified, the parameter is a required parameter. This
can also be specified explicitly using tw.Required.

request_local Can the parameter be overriden on a per-request basis? (default: True)

attribute Should the parameter be automatically included as an attribute? (default: False)

view_name The name used for the attribute. This is useful for attributes like class which are reserved names in
Python. If this is None, the name is used. (default: None)

The class takes care to record which arguments have been explictly specifed, even if to their default value. If a
parameter from a base class is updated in a subclass, arguments that have been explicitly specified will override
the base class.

class tw2.core.Deferred(fn)
This class is used as a wrapper around a parameter value. It takes a callable, which will be called every time the
widget is displayed, with the returned value giving the parameter value.

1.2.2 Resources

ToscaWidgets comes with resources management for widgets too.

Some widgets might be complex enough that they need external resources to work properly. Typically those are CSS
stylesheets or Javascript functions.

The need for those can be specified in the Widget.resources param, which is a list of resources the widget needs
to work properly

The tw2.core.middleware.TwMiddleware takes care of serving all the resources needed by a widget through
a tw2.core.resources.ResourcesApp. There is not need to setup such application manually, having a
TwMiddleware in place will provide support for resources too.

When a widget is being prepared for display, all resources that it requires (as specified by tw2.core.Widget.
resources) are registered into the current request and while the response page output goes through the middleware
it will be edited to add the links (or content) of those resources as specified by their location.

Note: If a resource was already injected into the page during current request and another widget requires it, it won’t
be injected twice. ToscaWidgets is able to detect that it’s the same resource (thanks to the resource id) and only inject
that once.

To add resources to a widget simply specify them in tw2.core.Widget.resources:

10 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

class HelloWidgetClass(twc.Widget):
inline_engine_name = "kajiki"
template = """

<i class="${w.css_class}">Hello ${w.name}</i>
"""

name = twc.Param(description="Name of the greeted entity")
css_class = twc.Param(description="Class used to display content", default="red")

resources = [
twc.CSSSource(src="""

.red { color: red; }

.green { color: green; }

.blue { color: blue; }
""")

]

Once the page where the widget is displayed is rendered, you will see that it begins with:

<!DOCTYPE html>
<html>
<head><style type="text/css">

.red { color: red; }

.green { color: green; }

.blue { color: blue; }
</style>

<meta content="width=device-width, initial-scale=1.0" name="viewport">
<meta charset="utf-8">

Which contains the CSS resource you specified as a dependency of your widget.

In case you are using a solution to package your resources into bundles like WebPack, WebAssets or similar, you
might want to disable resources injection using inject_resoures=False option provided to tw2.core.
middleware.TwMiddleware to avoid injecting resources that were already packed into your bundle.

Builtin Resource Types

class tw2.core.resources.ResourceBundle(**kw)
Just a list of resources.

Use it as follows:

>>> jquery_ui = ResourceBundle(resources=[jquery_js, jquery_css])
>>> jquery_ui.inject()

class tw2.core.resources.Resource(**kw)
A resource required by a widget being displayed.

location states where the resource should be injected into the page. Can be any of head, headbottom,
bodytop or bodybottom or None.

class tw2.core.resources.Link(**kw)
A link to a file.

The link parameter can be used to specify the explicit link to a URL.

If omitted, the link will be built to serve filename from modname as a resource coming from a python
distribution.

1.2. Widgets 11

ToscaWidgets2 Documentation, Release 2.2.9

classmethod guess_modname()
Try to guess my modname.

If I wasn’t supplied any modname, take a guess by stepping back up the frame stack until I find something
not in tw2.core

classmethod post_define()
This is a class method, that is called when a subclass of this Widget is created. Process static configuration
here. Use it like this:

class MyWidget(LeafWidget):
@classmethod
def post_define(cls):

id = getattr(cls, 'id', None)
if id and not id.startswith('my'):

raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an abstract class. There is no need to
call super(), the metaclass will do this automatically.

class tw2.core.resources.DirLink(**kw)
A whole directory as a resource.

Unlike JSLink and CSSLink, this resource doesn’t inject anything on the page.. but it does register all
resources under the marked directory to be served by the middleware.

This is useful if you have a css file that pulls in a number of other static resources like icons and images.

class tw2.core.resources.JSLink(**kw)
A JavaScript source file.

By default is injected in whatever default place is specified by the middleware.

class tw2.core.resources.CSSLink(**kw)
A CSS style sheet.

By default it’s injected at the top of the head node.

class tw2.core.resources.JSSource(**kw)
Inline JavaScript source code.

By default is injected before the </body> is closed

class tw2.core.resources.CSSSource(**kw)
Inline Cascading Style-Sheet code.

By default it’s injected at the top of the head node.

1.3 Forms

ToscaWidgets provides all the widgets related to building HTML Forms in the tw2.forms package.

While tw2.core implements the foundation for declaring any kind of widget, the tw2.forms is specialised in
widgets that are needed to create HTML forms.

1.3.1 Form

A form is usually created by declaring a subclass of a tw2.forms.Form. Within the form a child attribute
that specifies the Form Layout (how the fields shoulb be arranged graphically) through a subclass of tw2.forms.

12 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

Layout and then within child all the fields of the form can be declared:

import tw2.core as twc
import tw2.forms as twf

class MovieForm(twf.Form):
class child(twf.TableLayout):

title = twf.TextField()
director = twf.TextField(value='Default Director')
genres = twf.SingleSelectField(options=['Action', 'Comedy', 'Romance', 'Sci-fi

→˓'])

action = '/save_movie'

The form must also provide an action attribute to specify where the form should be submitted.

Note: If you are going to use ToscaWidgets with TurboGears you probably want the action to be a tg.lurl to
ensure that prefix of your application is retained.

Form Buttons

By default, each form comes with a submit button.

The submit button can be replaced by setting the form submit attribute:

class NameForm(twf.Form):
class child(twf.TableLayout):

name = twf.TextField()

action = '/save_name'
submit = twf.SubmitButton(value="Save Name")

Multiple buttons can also be provided for the form by setting the buttons attribute:

class NameForm(twf.Form):
class child(twf.TableLayout):

name = twf.TextField()

action = '/save_name'
buttons = [

twf.SubmitButton(value="Save Name"),
twf.ResetButton(),
twf.Button(value="Say Hi", attrs=dict(onclick="alert('hi')"))

]

Dynamic Forms

Children can be added and removed dynamically from forms using the Widget.post_define() and Widget.
prepare() methods.

For example to change children of a form based on an option, Widget.post_define() can be used:

1.3. Forms 13

ToscaWidgets2 Documentation, Release 2.2.9

class GrowingMovieForm(twf.Form):
class child(twf.TableLayout):

@classmethod
def post_define(cls):

if not cls.parent:
return

children = []

for count in range(cls.parent.num_contacts):
class person_fieldset(twf.TableFieldSet):

id = "person_%s" % count
label = "Person #%s" % count
name = twf.TextField(validator=twc.Validator(required=True))
surname = twf.TextField()

children.append(person_fieldset(parent=cls))

cls.children = children

action = '/save_contacts'
num_contacts = twc.Param(default=1)

fivefieldsform = GrowingMovieForm(num_contacts=5)

Note: Use the same fivefieldsform object for both display and validation. Trying to make a new
GrowingMovieForm might not work even though num_contacts is always set to 5.

This will not work btw if you need to take action at display time. In such case Widget.prepare() is needed, for
example to have a text field that suggests the placeholder based on its original value:

class DynamicText(twf.Form):
class child(twf.TableLayout):

text = twf.TextField(placeholder="Put text here")

action = "/save_movie"

def prepare(self):
super(DynamicText, self).prepare()

if self.child.children.text.value:
self.child.children.text.attrs = dict(

self.child.children.text.attrs,
placeholder="Put text here (was %s)" % self.child.children.text.value

)

Note: Widget.prepare() is usually involved when setting a state that depends on the current request. For
example current value of a field, or something else that is known only in current request. The resulting state of the
widget is also only valid in current request, a different request might have nothing in common. Keep this in mind when
using validation, as validation usually happens in a different request from the one that displayed the widget.

class tw2.forms.widgets.Form(**kw)
A form, with a submit button. It’s common to pass a TableLayout or ListLayout widget as the child.

14 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

classmethod post_define()
This is a class method, that is called when a subclass of this Widget is created. Process static configuration
here. Use it like this:

class MyWidget(LeafWidget):
@classmethod
def post_define(cls):

id = getattr(cls, 'id', None)
if id and not id.startswith('my'):

raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an abstract class. There is no need to
call super(), the metaclass will do this automatically.

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

submit
alias of tw2.core.params.SubmitButton_s_s

1.3.2 Validating Forms

When you submit a form, it will send its data to the endpoint you specified through the action parameter.

Before using it, you probably want to make sure that the data that was sent is correct and display back to the user error
messages when it is not.

This can be done through Validation and thanks to the fact that Forms remember which form was just validated in the
current request.

For each field in the form it is possible to specify a validator= parameter, which will be in charge of validation for
that field:

class ValidatedForm(twf.Form):
class child(twf.TableLayout):

number = twf.TextField(placeholder="a number (1, 2, 3, 4)",
validator=twc.validation.IntValidator())

required = twf.TextField(validator=twc.Required)

To validate the data submitted through this form you can use the tw2.forms.widgets.Form.validate()
method.

If the validation passes, the method will return the validated data:

>>> ValidatedForm.validate({'numer': 5, 'required': 'hello'})
{'numer': 5, 'required': 'hello'}

If the validation fails, it will raise a tw2.core.validation.ValidationError exception:

Traceback (most recent call last):
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 106, in wrapper

(continues on next page)

1.3. Forms 15

ToscaWidgets2 Documentation, Release 2.2.9

(continued from previous page)

d = fn(self, *args, **kw)
File "/home/amol/wrk/tw2.core/tw2/core/widgets.py", line 718, in _validate

raise vd.ValidationError('childerror', exception_validator)
tw2.core.validation.ValidationError

Such error can be trapped to get back the validated widget, the value that was being validated and the error message
for each of its children:

>>> try:
... ValidatedForm.validate({'numer': 'Hello', 'required': ''})
... except tw2.core.validation.ValidationError as e:
... print(e.widget.child.value)
... for c in e.widget.child.children:
... print(c.compound_key, ':', c.error_msg)

{'numer': 'Hello', 'required': ''}
numer : Must be an integer
required : Enter a value

Also, trying to display back the form that was just validated, will print out the error message for each field:

>>> try:
... ValidatedForm.validate({'numer': 'Hello', 'required': ''})
... except tw2.core.validation.ValidationError as e:
... print(e.widget.display())

<form enctype="multipart/form-data" method="post">

<table>
<tr class="odd error" id="numer:container">

<th><label for="numer">Numer</label></th>
<td>

<input id="numer" name="numer" placeholder="a number (1, 2, 3, 4)" type=
→˓"text" value="Hello"/>

Must be an integer
</td>

</tr><tr class="even required error" id="required:container">
<th><label for="required">Required</label></th>
<td>

<input id="required" name="required" type="text" value=""/>
Enter a value

</td>
</tr>
</table>
<input type="submit" value="Save"/>

</form>

For convenience, you can also recover the currently validated instance of the form anywhere in the code. Even far
away from the exception that reported the validation error.

This can be helpful when you are isolating validation into a separate Aspect of your application and then you need to
recover the form instance that includes the errors to display into your views.

To retrieve the currently validated widget, you can just use tw2.core.widget.Widget.req():

16 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

>>> try:
... ValidatedForm.validate({'numer': 'Hello', 'required': ''})
... except tw2.core.validation.ValidationError as e:
... print(e.widget)
... print(ValidatedForm.req())

<__main__.ValidatedForm object at 0x7f9432e5e080>
<__main__.ValidatedForm object at 0x7f9432e5e080>

As you can see ValidatedForm.req() returns the same exact instance that e.widget was. That’s because
when Widget.req() is used and there is a validated instance of that same exact widget in the current request,
ToscaWidgets will assume you are trying to access the widget you just validated and will return that one instace of
building a new instance.

If you want a new instance, you can still do ValidatedForm().req() instead of ValidatedForm.req():

>>> try:
... ValidatedForm.validate({'numer': 'Hello', 'required': ''})
... except tw2.core.validation.ValidationError as e:
... print(e.widget)
... print(ValidatedForm().req())

<__main__.ValidatedForm object at 0x7f9432e5e080>
<tw2.core.params.ValidatedForm_d object at 0x7f9432420940>

Keep in mind that this only keeps memory of the last widget that failed validation. So in case multiple widgets failed
validation in the same request, you must used tw2.core.validation.ValidationError.widget to access
each one of them.

1.3.3 Form Layout

A layout specifies how the fields of the form should be arranged.

This can be specified by having Form.child inherit from a specific layout class:

class NameForm(twf.Form):
class child(twf.TableLayout):

name = twf.TextField()

or:

class NameForm(twf.Form):
class child(twf.ListLayout):

name = twf.TextField()

Custom Layouts

A custom layout class can also be made to show the children however you want:

class Bootstrap3Layout(twf.BaseLayout):
inline_engine_name = "kajiki"
template = """

<div py:attrs="w.attrs">
<div class="form-group" py:for="c in w.children_non_hidden" title="${w.hover_help

→˓and c.help_text or None}" py:attrs="c.container_attrs" id="${c.compound_id}
→˓:container"> (continues on next page)

1.3. Forms 17

ToscaWidgets2 Documentation, Release 2.2.9

(continued from previous page)

<label for="${c.id}" py:if="c.label">$c.label</label>
${c.display(attrs={"class": "form-control"})}
<span id="${c.compound_id}:error" class="error help-block" py:content="c.

→˓error_msg"/>
</div>
<py:for each="c in w.children_hidden">${c.display()}</py:for>
<div id="${w.compound_id}:error" py:content="w.error_msg"></div>

</div>"""

class BootstrapNameForm(twf.Form):
class child(Bootstrap3Layout):

name = twf.TextField()

submit = twf.SubmitButton(css_class="btn btn-default")

Complex Layouts

In case of complex custom layouts, you can even specify the layout case by case in the form itself with each children
in a specific position accessing the children using w.children.child_name:

class OddNameForm(twf.Form):
class child(twf.BaseLayout):

inline_engine_name = "kajiki"
template = """
<div py:attrs="w.attrs">

<div py:with="c=w.children.name">
${c.display()}

</div>
<div py:with="c=w.children.surname">

${c.display()}

</div>

<py:for each="ch in w.children_hidden">${ch.display()}</py:for>
<div id="${w.compound_id}:error" py:content="w.error_msg"></div>

</div>
"""

name = twf.TextField()
surname = twf.TextField()

class tw2.forms.widgets.BaseLayout(**kw)
The following CSS classes are used, on the element containing both a child widget and its label.

odd / even On alternating rows. The first row is odd.

required If the field is a required field.

error If the field contains a validation error.

prepare()
Propagate the value for this widget to the children, based on their id.

class tw2.forms.widgets.ListLayout(**kw)
Arrange widgets and labels in a list.

The following CSS classes are used, on the element containing both a child widget and its label.

18 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

odd / even On alternating rows. The first row is odd.

required If the field is a required field.

error If the field contains a validation error.

class tw2.forms.widgets.TableLayout(**kw)
Arrange widgets and labels in a table.

The following CSS classes are used, on the element containing both a child widget and its label.

odd / even On alternating rows. The first row is odd.

required If the field is a required field.

error If the field contains a validation error.

class tw2.forms.widgets.GridLayout(**kw)
Arrange labels and multiple rows of widgets in a grid.

child
alias of tw2.core.params.RowLayout_s

class tw2.forms.widgets.RowLayout(**kw)
Arrange widgets in a table row. This is normally only useful as a child to GridLayout.

prepare()
Propagate the value for this widget to the children, based on their id.

1.3.4 Bultin Form Fields

tw2.forms package comes with a bunch of builtin widgets that can help you build the most common kind of forms.

class tw2.forms.widgets.FormField(**kw)
Basic Form Widget from which each other field will inherit

name
Name of the field

required
If the field is required according to its validator (read-only)

class tw2.forms.widgets.TextFieldMixin(**kw)
Misc mixin class with attributes for textual input fields

maxlength = None
Maximum length of the field

placeholder = None
Placeholder text, until user writes something.

class tw2.forms.widgets.InputField(**kw)
A generic <input> field.

Generally you won’t use this one, but will rely on one of its specialised subclasses like TextField or
Checkbox.

type = None
Input type

value = None
Current value of the input

1.3. Forms 19

ToscaWidgets2 Documentation, Release 2.2.9

required = None
Add required attributed to the input.

autofocus = None
Add autofocus attributed to the input.

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.PostlabeledInputField(**kw)
Inherits InputField, but with a text label that follows the input field

text = None
Text to display in the label after the field.

text_attrs = {}
Attributes of the label displayed after to the field.

class tw2.forms.widgets.TextField(**kw)
A simple text field where to input a single line of text

size = None
Add size attribute to the HTML field.

class tw2.forms.widgets.TextArea(**kw)
A multiline text area

rows = None
Add a rows= attribute to the HTML textarea

cols = None
Add a cols= attribute to the HTML textarea

class tw2.forms.widgets.CheckBox(**kw)
A single checkbox.

Its value will be True or Folse if selected or not.

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.RadioButton(**kw)
A single radio button

checked = False
If the radio button is checked or not.

class tw2.forms.widgets.PasswordField(**kw)
A password field. This never displays a value passed into the widget, although it does redisplay entered values
on validation failure. If no password is entered, this validates as EmptyField.

20 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.FileValidator(**kw)
Validate a file upload field

extension Allowed extension for the file

class tw2.forms.widgets.FileField(**kw)
A field for uploading files. The returned object has (at least) two properties of note:

• filename: the name of the uploaded file

• value: a bytestring of the contents of the uploaded file, suitable for being written to disk

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.HiddenField(**kw)
A hidden field.

Typically this is used to bring around in the form values that the user should not be able to modify or see. Like
the ID of the entity edited by the form.

class tw2.forms.widgets.IgnoredField(**kw)
A hidden field. The value is never included in validated data.

class tw2.forms.widgets.LabelField(**kw)
A read-only label showing the value of a field. The value is stored in a hidden field, so it remains through
validation failures. However, the value is never included in validated data.

class tw2.forms.widgets.LinkField(**kw)
A dynamic link based on the value of a field. If either link or text contain a $, it is replaced with the field value.
If the value is None, and there is no default, the entire link is hidden.

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.Button(**kw)
Generic button. You can override the text using value and define a JavaScript action using attrs[‘onclick’].

class tw2.forms.widgets.SubmitButton(**kw)
Button to submit a form.

1.3. Forms 21

ToscaWidgets2 Documentation, Release 2.2.9

class tw2.forms.widgets.ResetButton(**kw)
Button to clear the values in a form.

class tw2.forms.widgets.ImageButton(**kw)

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.HTML5PatternMixin(**kw)
HTML5 mixin for input field regex pattern matching

See http://html5pattern.com/ for common patterns.

TODO: Configure server-side validator

class tw2.forms.widgets.HTML5MinMaxMixin(**kw)
HTML5 mixin for input field value limits

TODO: Configure server-side validator

class tw2.forms.widgets.HTML5StepMixin(**kw)
HTML5 mixin for input field step size

class tw2.forms.widgets.HTML5NumberMixin(**kw)
HTML5 mixin for number input fields

class tw2.forms.widgets.EmailField(**kw)
An email input field (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

class tw2.forms.widgets.UrlField(**kw)
An url input field (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

class tw2.forms.widgets.NumberField(**kw)
A number spinbox (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

class tw2.forms.widgets.RangeField(**kw)
A number slider (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

class tw2.forms.widgets.SearchField(**kw)
A search box (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

class tw2.forms.widgets.ColorField(**kw)
A color picker field (HTML5 only).

Will fallback to a normal text input field on browser not supporting HTML5.

22 Chapter 1. Content

http://html5pattern.com/

ToscaWidgets2 Documentation, Release 2.2.9

class tw2.forms.widgets.SelectionField(**kw)
Base class for single and multiple selection fields.

The options parameter must be a list; it can take several formats:

• A list of values, e.g. ['', 'Red', 'Blue']

• A list of (code, value) tuples, e.g. [(0, ''), (1, 'Red'), (2, 'Blue')]

• A mixed list of values and tuples. If the code is not specified, it defaults to the value. e.g. ['', (1,
'Red'), (2, 'Blue')]

• Attributes can be specified for individual items, e.g. [(1, 'Red',
{'style':'background-color:red'})]

• A list of groups, e.g. [('group1', [(1, 'Red')]), ('group2', ['Pink',
'Yellow'])]

Setting value before rendering will set the default displayed value on the page. In ToscaWidgets1, this was
accomplished by setting default. That is no longer the case.

options = None
List of options to pick from in the form [(id, text), (id, text), ...]

prompt_text = None
Prompt to display when no option is selected. Set to None to disable this.

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.MultipleSelectionField(**kw)

item_validator = None
Validator that has to be applied to each item.

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.SingleSelectField(**kw)
Specialised SelectionField to pick one element from a list of options.

class tw2.forms.widgets.MultipleSelectField(**kw)
Specialised SelectionField to pick multiple elements from a list of options.

size = None
Number of options to show

class tw2.forms.widgets.SelectionList(**kw)

class tw2.forms.widgets.SeparatedSelectionTable(**kw)

1.3. Forms 23

ToscaWidgets2 Documentation, Release 2.2.9

class tw2.forms.widgets.RadioButtonList(**kw)

class tw2.forms.widgets.CheckBoxList(**kw)

class tw2.forms.widgets.SelectionTable(**kw)

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.VerticalSelectionTable(**kw)

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

class tw2.forms.widgets.RadioButtonTable(**kw)

class tw2.forms.widgets.SeparatedRadioButtonTable(**kw)

class tw2.forms.widgets.VerticalRadioButtonTable(**kw)

class tw2.forms.widgets.CheckBoxTable(**kw)

class tw2.forms.widgets.SeparatedCheckBoxTable(**kw)

class tw2.forms.widgets.VerticalCheckBoxTable(**kw)

class tw2.forms.widgets.BaseLayout(**kw)
The following CSS classes are used, on the element containing both a child widget and its label.

odd / even On alternating rows. The first row is odd.

required If the field is a required field.

error If the field contains a validation error.

prepare()
Propagate the value for this widget to the children, based on their id.

class tw2.forms.widgets.TableLayout(**kw)
Arrange widgets and labels in a table.

The following CSS classes are used, on the element containing both a child widget and its label.

odd / even On alternating rows. The first row is odd.

required If the field is a required field.

error If the field contains a validation error.

24 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

class tw2.forms.widgets.ListLayout(**kw)
Arrange widgets and labels in a list.

The following CSS classes are used, on the element containing both a child widget and its label.

odd / even On alternating rows. The first row is odd.

required If the field is a required field.

error If the field contains a validation error.

class tw2.forms.widgets.RowLayout(**kw)
Arrange widgets in a table row. This is normally only useful as a child to GridLayout.

prepare()
Propagate the value for this widget to the children, based on their id.

class tw2.forms.widgets.StripBlanks(**kw)

to_python(value, state=None)
Convert an external value to Python and validate it.

class tw2.forms.widgets.GridLayout(**kw)
Arrange labels and multiple rows of widgets in a grid.

child
alias of tw2.core.params.RowLayout_s

class tw2.forms.widgets.Spacer(**kw)
A blank widget, used to insert a blank row in a layout.

class tw2.forms.widgets.Label(**kw)
A textual label. This disables any label that would be displayed by a parent layout.

class tw2.forms.widgets.Form(**kw)
A form, with a submit button. It’s common to pass a TableLayout or ListLayout widget as the child.

classmethod post_define()
This is a class method, that is called when a subclass of this Widget is created. Process static configuration
here. Use it like this:

class MyWidget(LeafWidget):
@classmethod
def post_define(cls):

id = getattr(cls, 'id', None)
if id and not id.startswith('my'):

raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an abstract class. There is no need to
call super(), the metaclass will do this automatically.

submit
alias of tw2.core.params.SubmitButton_s_s

prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local config-
uration here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

1.3. Forms 25

ToscaWidgets2 Documentation, Release 2.2.9

class tw2.forms.widgets.FieldSet(**kw)
A field set. It’s common to pass a TableLayout or ListLayout widget as the child.

class tw2.forms.widgets.TableForm(**kw)
Equivalent to a Form containing a TableLayout.

child
alias of tw2.core.params.TableLayout_s

submit
alias of tw2.core.params.SubmitButton_s_s_s

class tw2.forms.widgets.ListForm(**kw)
Equivalent to a Form containing a ListLayout.

child
alias of tw2.core.params.ListLayout_s

submit
alias of tw2.core.params.SubmitButton_s_s_s

class tw2.forms.widgets.TableFieldSet(**kw)
Equivalent to a FieldSet containing a TableLayout.

child
alias of tw2.core.params.TableLayout_s

class tw2.forms.widgets.ListFieldSet(**kw)
Equivalent to a FieldSet containing a ListLayout.

child
alias of tw2.core.params.ListLayout_s

class tw2.forms.widgets.FormPage(**kw)
A page that contains a form. The request method performs validation, redisplaying the form on errors. On
success, it calls validated_request.

1.4 Validation

ToscaWidgets provides validation support for all the data that needs to be displayed into widgets or that has to come
from submitted forms.

Setting a validator for a widget (or a form field) can be done through the tw2.core.Widget.validator param.

Validators are typically used in the context of forms and can be used both to tell ToscaWidgets how a python object
should be displayed in HTML result:

>>> import tw2.core as twc
>>> import tw2.forms as twf
>>>
>>> w = twf.TextField(validator=twc.validation.DateValidator(format="%Y/%m/%d"))
>>> w.display(datetime.datetime.utcnow())
Markup('<input value="2019/04/04" type="text"/>')

Or to tell ToscaWidgets how the data coming from a submitted form should be converted into Python:

>>> class MyDateForm(twf.Form):
... class child(twf.TableLayout):
... date = twf.TextField(validator=twc.validation.DateValidator(format="%Y/%m/%d
→˓"))

(continues on next page)

26 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

(continued from previous page)

...
>>> MyDateForm.validate({'date': '2019/5/3'})
{'date': datetime.date(2019, 5, 3)}

1.4.1 Validators

A validator is a class in charge of two major concerns:

• Converting data from the web to python and back to the web

• Validating that the data is what you expected.

Both those step are performed through two methods:

tw2.core.validation.Validator.to_python() which is in charge of converting data from the web to
Python:

>>> validator = twc.validation.DateValidator(required=True, format="%Y/%m/%d")
>>> validator.to_python('2019/10/3')
datetime.date(2019, 10, 3)

and tw2.core.validation.Validator.from_python() which is in charge of converting data from
Python to be displahyed on a web page:

>>> validator.from_python(datetime.datetime.utcnow())
"2019/04/04"

When converting data to python (so for data submitted from the web to your web application) the validator does three
steps:

1. Ensures that the data is not empty through tw2.core.validation.Validator._is_empty() if
required=True was provided

2. Converts data to Python through tw2.core.validation.Validator._convert_to_python()

3. Validates that the converted data matches what you expected through tw2.core.validation.
Validator._validate_python()

All those three methods (is_empty, _convert_to_python and _validate_python) can be specialised in
subclasses to implement your own validators.

For example the tw2.core.validation.IntValidator takes care of converting the incoming text to interg-
ers:

>>> twc.validation.IntValidator().to_python("5")
5

but also takes care of validating that it’s within an expected range:

>>> twc.validation.IntValidator(min=1).to_python("0")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 236, in to_python

self._validate_python(value, state)
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 376, in _validate_python

raise ValidationError('toosmall', self)
tw2.core.validation.ValidationError: Must be at least 1

1.4. Validation 27

ToscaWidgets2 Documentation, Release 2.2.9

1.4.2 Custom Validators

You can write your own validators by subclassing tw2.core.validation.Validator.

Those should at least implement the custom conversion part, to tell toscawidgets how to convert the incoming data to
the type you expect:

class TwoNumbersValidator(twc.validation.Validator):
def _convert_to_python(self, value, state=None):

try:
return [int(v) for v in value.split(',')]

except ValueError:
raise twc.validation.ValidationError("Must be integers", self)

except Exception:
raise twc.validation.ValidationError("corrupt", self)

This is already enough to be able to convert the incoming data to a list of numbers:

>>> TwoNumbersValidator().to_python("5,3")
[5, 3]

and to detect that numbers were actually submitted:

>>> TwoNumbersValidator().to_python("5, allo")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 235, in to_python

value = self._convert_to_python(value, state)
File "<stdin>", line 6, in _convert_to_python

tw2.core.validation.ValidationError: Must be integers

and to detect malformed inputs:

>>> TwoNumbersValidator().to_python(datetime.datetime.utcnow())
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 235, in to_python

value = self._convert_to_python(value, state)
File "<stdin>", line 8, in _convert_to_python

tw2.core.validation.ValidationError: Form submission received corrupted; please try
→˓again

But it doesn’t perform validation on the converted data. It doesn’t ensure that what was provided are really two
numbers:

>>> TwoNumbersValidator().to_python("5")
[5]

To do so we need to implement the validation part of the validator, which is done through _validate_python:

class TwoNumbersValidator(twc.validation.Validator):
def _convert_to_python(self, value, state=None):

try:
return [int(v) for v in value.split(',')]

except ValueError:
raise twc.validation.ValidationError("Must be integers", self)

except Exception:
raise twc.validation.ValidationError("corrupt", self)

(continues on next page)

28 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

(continued from previous page)

def _validate_python(self, value, state=None):
if len(value) != 2:

raise twc.validation.ValidationError("Must be two numbers", self)

To finally provide coverage for the case where a single number (or more than two numbers) were provided:

>>> TwoNumbersValidator().to_python("5")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 236, in to_python

self._validate_python(value, state)
File "<stdin>", line 11, in _validate_python

tw2.core.validation.ValidationError: Must be two numbers

You will notice by the way, that empty values won’t cause validation errors:

>>> v = TwoNumbersValidator().to_python("")

Those will be converted to None:

>>> print(v)
None

Because by default validators have required=False which means that missing values are perfectly fine.

If you want to prevent that behaviour you can provide required=True to the validator:

>>> TwoNumbersValidator(required=True).to_python("")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 231, in to_python

raise ValidationError('required', self)
tw2.core.validation.ValidationError: Enter a value

1.4.3 Internationalization

Validator error messages can be translated through the usage of the msgs lookup dictionary.

The msgs dictionary is a map from keywords to translated strings and it’s used by ToscaWidgets to know which
message to show to users:

from tw2.core.i18n import tw2_translation_string

class FloatValidator(twc.Validator):
msgs = {

"notfloat": tw2_translation_string("Not a floating point number")
}

def _convert_to_python(self, value, state):
try:

return float(value)
except ValueError:

raise twc.validation.ValidationError("notfloat", self)

You will see that when validation fails, the "notfloat" key is looked up into msgs to find the proper message:

1.4. Validation 29

ToscaWidgets2 Documentation, Release 2.2.9

>>> FloatValidator().to_python("Hello")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 235, in to_python

value = self._convert_to_python(value, state)
File "<stdin>", line 9, in _convert_to_python

tw2.core.validation.ValidationError: Not a floating point number

The entry in msgs is then wrapped in a tw2.core.i18n.tw2_translation_string() call to ensure it gets
translated using the translated that was configured in tw2.core.middleware.TwMiddleware options.

Note: tw2.core.i18n.tw2_translation_string() is also available as tw2.core.i18n._ so that
frameworks that automate translatable strings collection like Babel can more easily find strings that need translation
in ToscaWidgets validators.

The other purpose of msgs is to allow users of your validator to customise their error messages:

>>> FloatValidator(msgs={"notfloat": "Ahah! Gotcha!"}).to_python("Hello")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/home/amol/wrk/tw2.core/tw2/core/validation.py", line 235, in to_python

value = self._convert_to_python(value, state)
File "<stdin>", line 9, in _convert_to_python

tw2.core.validation.ValidationError: Ahah! Gotcha!

In such case (when msgs are customised) translation of the messages is up to the user customising
them. Who might want to ensure the new provided messages are still wrapped in tw2.core.i18n.
tw2_translation_string().

1.4.4 Builtin Validators

exception tw2.core.validation.ValidationError(msg, validator=None, widget=None)
Invalid data was encountered during validation.

The constructor can be passed a short message name, which is looked up in a validator’s msgs dictionary. Any
values in this, like $val` are substituted with that attribute from the validator. An explicit validator instance
can be passed to the constructor, or this defaults to Validator otherwise.

message
Added for backwards compatibility. Synonymous with msg.

tw2.core.validation.catch
alias of tw2.core.validation.ValidationError

tw2.core.validation.unflatten_params(params)
This performs the first stage of validation. It takes a dictionary where some keys will be compound names, such
as “form:subform:field” and converts this into a nested dict/list structure. It also performs unicode decoding,
with the encoding specified in the middleware config.

class tw2.core.validation.Validator(**kw)
Base class for validators

required Whether empty values are forbidden in this field. (default: False)

strip Whether to strip leading and trailing space from the input, before any other validation. (default: True)

30 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

To convert and validate a value to Python, use the to_python() method, to convert back from Python, use
from_python().

To create your own validators, sublass this class, and override any of _validate_python(),
_convert_to_python(), or _convert_from_python(). Note that these methods are not meant to
be used externally. All of them may raise ValidationErrors.

to_python(value, state=None)
Convert an external value to Python and validate it.

from_python(value, state=None)
Convert from a Python object to an external value.

validate_python(value, state=None)
“Deprecated, use _validate_python() instead.

This method has been renamed in FormEncode 1.3 and ToscaWidgets 2.2 in order to clarify that is an
internal method that is meant to be overridden only; you must call meth:to_python to validate values.

class tw2.core.validation.BlankValidator(**kw)
Always returns EmptyField. This is the default for hidden fields, so their values are not included in validated
data.

to_python(value, state=None)
Convert an external value to Python and validate it.

class tw2.core.validation.LengthValidator(**kw)
Confirm a value is of a suitable length. Usually you’ll use StringLengthValidator or
ListLengthValidator instead.

min Minimum length (default: None)

max Maximum length (default: None)

class tw2.core.validation.StringLengthValidator(**kw)
Check a string is a suitable length. The only difference to LengthValidator is that the messages are worded
differently.

class tw2.core.validation.ListLengthValidator(**kw)
Check a list is a suitable length. The only difference to LengthValidator is that the messages are worded differ-
ently.

class tw2.core.validation.RangeValidator(**kw)
Confirm a value is within an appropriate range. This is not usually used directly, but other validators are derived
from this.

min Minimum value (default: None)

max Maximum value (default: None)

class tw2.core.validation.IntValidator(**kw)
Confirm the value is an integer. This is derived from RangeValidator so min and max can be specified.

class tw2.core.validation.BoolValidator(**kw)
Convert a value to a boolean. This is particularly intended to handle check boxes.

class tw2.core.validation.OneOfValidator(**kw)
Confirm the value is one of a list of acceptable values. This is useful for confirming that select fields have not
been tampered with by a user.

values Acceptable values

1.4. Validation 31

ToscaWidgets2 Documentation, Release 2.2.9

class tw2.core.validation.DateTimeValidator(**kw)
Confirm the value is a valid date and time. This is derived from RangeValidator so min and max can be
specified.

format The expected date/time format. The format must be specified using the same syntax as the Python
strftime function.

class tw2.core.validation.DateValidator(**kw)
Confirm the value is a valid date.

Just like DateTimeValidator, but without the time component.

class tw2.core.validation.RegexValidator(**kw)
Confirm the value matches a regular expression.

regex A Python regular expression object, generated like re.compile('^\w+$')

class tw2.core.validation.EmailValidator(**kw)
Confirm the value is a valid email address.

class tw2.core.validation.UrlValidator(**kw)
Confirm the value is a valid URL.

class tw2.core.validation.IpAddressValidator(**kw)
Confirm the value is a valid IP4 address, or network block.

allow_netblock Allow the IP address to include a network block (default: False)

require_netblock Require the IP address to include a network block (default: False)

class tw2.core.validation.UUIDValidator(**kw)
Confirm the value is a valid uuid and convert to uuid.UUID.

class tw2.core.validation.MatchValidator(other_field, pass_on_invalid=False, **kw)
Confirm a field matches another field

other_field Name of the sibling field this must match

pass_on_invalid Pass validation if sibling field is Invalid

class tw2.core.validation.CompoundValidator(*args, **kw)
Base class for compound validators.

Child classes Any and All take validators as arguments and use them to validate “value”. In case the validation
fails, they raise a ValidationError with a compound message.

>>> v = All(StringLengthValidator(max=50), EmailValidator, required=True)

class tw2.core.validation.All(*args, **kw)
Confirm all validators passed as arguments are valid.

class tw2.core.validation.Any(*args, **kw)
Confirm at least one of the validators passed as arguments is valid.

1.5 Javascript Integration

ToscaWidget2 was designed to work with any Javascript framework and integrate Python and Javascript as well as
possible, leading to a seamless development experience when you have to provide Javascript callbacks or functions to
your Python declared widgets and forms.

32 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

1.5.1 Javascript on Display

Frequently, when a widget is displayed, you might have to run some form of initialization in JavaScript to attach
dynamic behaviours to it.

This can be done by using tw2.core.Widget.add_call() to register a tw2.core.js.js_function that should be
called.

A simple example might be to display a widget that shows an “Hello World” alert every time it renders:

import tw2.core as twc

class HelloJSWidget(twc.Widget):
message = twc.Param(description="Message to display")
template = "<div></div>"
inline_engine_name = "kajiki"

def prepare(self):
super(HelloJSWidget, self).prepare()

alert = twc.js.js_function("alert")
if self.message:

self.add_call(alert(self.message))

As you can see we define a new tw2.core.js.js_function named “alert” and we assign it to the python
“alert” variable. If a message is provided, tw2.core.Widget.add_call() is used to register alert(self.
message) as what should be called every time the widget is rendered.

Displaying the widget in a web page:

HelloJSWidget(message="Hello World").display()

will in fact open an alert box with the “Hello World” text.

But you are not constrained to use pre-existing Javascript functions (like alert), you can in fact declare your own
function (or use one that was imported from a tw2.core.resources.JSLink).

For example we can change the previous widget to accept only the name of the person to greet instead of the whole
message and display "Hello SOMEONE" always:

class HelloJSWidget(twc.Widget):
greeted = twc.Param(description="Who to greet")
template = "<div></div>"
inline_engine_name = "kajiki"

def prepare(self):
super(HelloJSWidget, self).prepare()
sayhello = twc.js.js_function('(function(target){ alert("Hello " + target); })

→˓')

if self.greeted:
self.add_call(sayhello(self.greeted))

As you could see, instead of having out tw2.core.js.js_function point to an already existing one, we de-
clared a new one that accepts a target argument and displays an alert to greet the target.

The target of the greet message is then set in HelloJSWidget.prepare through the greeted param.

Displaying such widget will lead as expected to show an alert box with “Hello” plus the name of the greeted person:

1.5. Javascript Integration 33

ToscaWidgets2 Documentation, Release 2.2.9

HelloJSWidget(greeted="Mario").display()

It’s also for example possible to run javascript that will target the widget itself by using the Widget.id and Widget.
compound_id properties to know the unique identifier of the widget in the dom.

Using such tactic we could rewrite the previous widget to always read the greeted person from the content of the div
instead of passing it as an argument:

class HelloJSWidget(twc.Widget):
greeted = twc.Param(description="Who to greet")
template = """<div id="$w.id">${w.greeted}</div>"""
inline_engine_name = "kajiki"

def prepare(self):
super(HelloJSWidget, self).prepare()
sayhello = twc.js.js_function('(function(widget_id){ var target = document.

→˓getElementById(widget_id).innerText; alert("Hello " + target); })')
self.add_call(sayhello(self.id))

Note: compound_id is safer to use, as it avoids collions when widgets with the same id are used within different
parents. But is mostly only available in form fields. On plain widgets you might need to use id itself.

1.5.2 Javascript Callbacks

While being able to call javascript every time the widget is displayed is essential to be able to attach advanced javascript
behaviours to widgets, sometimes you will need to trigger Javascript callbacks when something happens on the wid-
gets.

This can usually be done with tw2.core.js.js_callback to declare the javascript callback you care about.

A possible example is to run some javascript when the selected option is changed in a single select field:

alertpicker = twf.SingleSelectField(
attrs={'onchange': twc.js.js_callback('alert("changed!")')},
options=[(1, 'First'), (2, 'Second')]

)

1.5.3 Builtin Javascript Helpers

Python-JS interface to dynamically create JS function calls from your widgets.

This moudle doesn’t aim to serve as a Python-JS “translator”. You should code your client-side code in JavaScript and
make it available in static files which you include as JSLinks or inline using JSSources. This module is only intended
as a “bridge” or interface between Python and JavaScript so JS function calls can be generated programatically.

class tw2.core.js.js_callback(cb, *args)
A js function that can be passed as a callback to be called by another JS function

Examples:

>>> str(js_callback("update_div"))
'update_div'

34 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

>>> str(js_callback("function (event) { }"))
'function (event) { }'

Can also create callbacks for deferred js calls

>>> str(js_callback(js_function('foo')(1,2,3)))
'function(){foo(1, 2, 3)}'

Or equivalently

>>> str(js_callback(js_function('foo'), 1,2,3))
'function(){foo(1, 2, 3)}'

A more realistic example

>>> jQuery = js_function('jQuery')
>>> my_cb = js_callback('function() { alert(this.text)}')
>>> on_doc_load = jQuery('#foo').bind('click', my_cb)
>>> call = jQuery(js_callback(on_doc_load))
>>> print call
jQuery(function(){jQuery(\"#foo\").bind(

\"click\", function() { alert(this.text)})})

class tw2.core.js.js_function(name)
A JS function that can be “called” from python and added to a widget by widget.add_call() so it get’s called
every time the widget is rendered.

Used to create a callable object that can be called from your widgets to trigger actions in the browser. It’s
used primarily to initialize JS code programatically. Calls can be chained and parameters are automatically
json-encoded into something JavaScript undersrtands. Example:

>>> jQuery = js_function('jQuery')
>>> call = jQuery('#foo').datePicker({'option1': 'value1'})
>>> str(call)
'jQuery("#foo").datePicker({"option1": "value1"})'

Calls are added to the widget call stack with the add_call method.

If made at Widget initialization those calls will be placed in the template for every request that renders the
widget:

>>> import tw2.core as twc
>>> class SomeWidget(twc.Widget): ...
pickerOptions = twc.Param(default={})
>>> SomeWidget.add_call(...

jQuery('#%s' % SomeWidget.id).datePicker(SomeWidget.pickerOptions)
...)

More likely, we will want to dynamically make calls on every request. Here we will call add_calls inside the
prepare method:

>>> class SomeWidget(Widget):
... pickerOptions = twc.Param(default={})
... def prepare(self):
... super(SomeWidget, self).prepare()
... self.add_call(
... jQuery('#%s' % d.id).datePicker(d.pickerOptions)
...)

1.5. Javascript Integration 35

ToscaWidgets2 Documentation, Release 2.2.9

This would allow to pass different options to the datePicker on every display.

JS calls are rendered by the same mechanisms that render required css and js for a widget and places those calls
at bodybottom so DOM elements which we might target are available.

Examples:

>>> call = js_function('jQuery')("a .async")
>>> str(call)
'jQuery("a .async")'

js_function calls can be chained:

>>> call = js_function('jQuery')("a .async").foo().bar()
>>> str(call)
'jQuery("a .async").foo().bar()'

class tw2.core.js.js_symbol(name=None, src=None)
An unquoted js symbol like document or window

1.6 Design

1.6.1 Widget Overview

The main purpose of a widget is to display a functional control within an HTML page. A widget has a template to
generate its own HTML, and a set of parameters that control how it will be displayed. It can also reference resources
- JavaScript or CSS files that support the widget.

When defining Widgets, some parameters with be static - they will stay constant for the whole lifetime of the applica-
tion. Some parameters are dynamic - they may change for every request. To ensure thread-safety, a separate widget
instance is created for every request, and dynamic parameters are only set on an instance. Static parameters are set by
subclassing a widget. For example:

Initialisation
class MyWidget(Widget):

id = 'myid'

In a request
my_widget = MyWidget.req()
my_widget.value = 'my value'

To make initialisation more concise, the __new__ method on Widget is overriden, so it creates subclasses, rather
than instances. The following code is equivalent to that above:

Initialisation
MyWidget = Widget(id='myid')

In practice, you will rarely need to explictly create an instance, using req(). If the display or validatemethods
are called on a Widget class, they automatically create an instance. For example, the following are equivalent:

Explicit creation
my_widget = MyWidget.req()
my_widget.value = 'my value'
my_widget.display()

(continues on next page)

36 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

(continued from previous page)

Implicit creation
MyWidget.display(value='my value')

Parameters

The parameters are how the user of the widget controls its display and behaviour. Parameters exist primarily for
documentation purposes, although they do have some run-time effects. When creating widgets, it’s important to
decide on a convenient set of parameters for the user of the widget, and to document these.

A parameter definition looks like this:

import tw2.core as twc
class MyTextField(twc.Widget):

size = twc.Param('The size of the field', default=30)
validator = twc.LengthValidator(max=30)
highlight = twc.Variable('Region to highlight')

In this case, TextField gets all the parameters of its base class, tw2.core.widget and defines a new parameter
- size. A widget can also override parameter in its base class, either with another tw2.core.Param instance, or
a new default value.

class tw2.core.Param(description=Default, default=Default, request_local=Default, at-
tribute=Default, view_name=Default)

A parameter for a widget.

description A string to describe the parameter. When overriding a parameter description, the string can include
$$ to insert the previous description.

default The default value for the parameter. If no defalt is specified, the parameter is a required parameter. This
can also be specified explicitly using tw.Required.

request_local Can the parameter be overriden on a per-request basis? (default: True)

attribute Should the parameter be automatically included as an attribute? (default: False)

view_name The name used for the attribute. This is useful for attributes like class which are reserved names in
Python. If this is None, the name is used. (default: None)

The class takes care to record which arguments have been explictly specifed, even if to their default value. If a
parameter from a base class is updated in a subclass, arguments that have been explicitly specified will override
the base class.

class tw2.core.Variable(description=Default, **kw)
A variable - a parameter that is passed from the widget to the template, but cannot be controlled by the user.
These do not appear in the concise documentation for the widget.

class tw2.core.ChildParam(description=Default, default=Default, request_local=Default, at-
tribute=Default, view_name=Default)

A parameter that applies to children of this widget

This is useful for situations such as a layout widget, which adds a label parameter to each of its children.
When a Widget subclass is defined with a parent, the widget picks up the defaults for any child parameters from
the parent.

class tw2.core.ChildVariable(description=Default, **kw)
A variable that applies to children of this widget

1.6. Design 37

ToscaWidgets2 Documentation, Release 2.2.9

Code Hooks

Subclasses of Widget can override the following methods. It is not recommended to override any other methods, e.g.
display, validate, __init__.

classmethod Widget.post_define()
This is a class method, that is called when a subclass of this Widget is created. Process static configuration here.
Use it like this:

class MyWidget(LeafWidget):
@classmethod
def post_define(cls):

id = getattr(cls, 'id', None)
if id and not id.startswith('my'):

raise pm.ParameterError("id must start with 'my'")

post_define should always cope with missing data - the class may be an abstract class. There is no need to call
super(), the metaclass will do this automatically.

Widget.prepare()
This is an instance method, that is called just before the Widget is displayed. Process request-local configuration
here. For efficiency, widgets should do as little work as possible here. Use it like this:

class MyWidget(Widget):
def prepare(self):

super(MyWidget, self).prepare()
self.value = 'My: ' + str(self.value)

Widget.generate_output(displays_on)
Generate the actual output text for this widget.

By default this renders the widget’s template. Subclasses can override this method for purely programmatic
output.

displays_on The name of the template engine this widget is being displayed inside.

Use it like this:

class MyWidget(LeafWidget):
def generate_output(self, displays_on):

return "{1}".format(self.attrs, self.text)

Mutable Members

If a widget’s prepare() method modifies a mutable member on the widget, it must take care not to modify a class
member, as this is not thread safe. In general, the code should call self.safe_modify(member_name), which
detects class members and creates a copy on the instance. Users of widgets should be aware that if a mutable is set
on an instance, the widget may modify this. The most common case of a mutable member is attrs. While this
arrangement is thread-safe and reasonably simple, copying may be bad for performance. In some cases, widgets may
deliberately decide not to call safe_modify(), if the implications of this are understood.

1.6.2 Widget Hierarchy

Widgets can be arranged in a hierarchy. This is useful for applications like layouts, where the layout will be a parent
widget and fields will be children of this. There are four roles a widget can take in the hierarchy, depending on the
base class used:

38 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

class tw2.core.Widget(**kw)
Base class for all widgets.

class tw2.core.CompoundWidget(**kw)
A widget that has an arbitrary number of children, this is common for layout components, such as tw2.forms.
TableLayout.

class tw2.core.RepeatingWidget(**kw)
A widget that has a single child, which is repeated an arbitrary number of times, such as tw2.forms.
GridLayout.

class tw2.core.DisplayOnlyWidget(**kw)
A widget that has a single child. The parent widget is only used for display purposes; it does not affect value
propagation or validation. This is used by widgets like tw2.forms.FieldSet.

Value Propagation

An important feature of the hierarchy is value propagation. When the value is set for a compound or repeating widget,
this causes the value to be set for the child widgets. In general, a leaf widget takes a scalar type as a value, a compound
widget takes a dict or an object, and a repeating widget takes a list.

The hierarchy also affects the generation of compound ids, and validation.

Identifier

In general, a widget needs to have an identifier. Without an id, it cannot participate in value propagation or validation,
and it does not get an HTML id attribute. There are some exceptions to this:

• Some widgets do not need an id (e.g. Label, Spacer) and provide a default id of None.

• The child of a RepeatingWidget must not have an id.

• An id can be specified either on a DisplayOnlyWidget, or it’s child, but not both. The widget that does not have
the id specified automatically picks it up from the other.

Compound IDs are formed by joining the widget’s id with those of its ancestors. These are used in two situations:

• For the HTML id attribute, and also the name attribute for form fields

• For the URL path a controller widget is registered at

The separator is a colon (:), resulting in compound ids like “form:sub_form:field”. Note this causes issues with CSS
and will be changed shortly, and made configurable.

In generel, the id on a DisplayOnlyWidget is not included in the compound id. However, when generating the com-
pound id for a DisplayOnlyWidget, the id is included. In addition id_suffix is appended, to avoid generating duplicate
IDs. The id_suffix is not appended for URL paths, to keep the paths short. There is a risk of duplicate IDs, but this is
not expected to be a problem in practice.

For children of a RepeatingWidget, the repetition is used instead of the id, for generating the compound HTML id.
For the URL path, the element is skipped entirely.

Deep Children

This is a feature that helps have a form layout that doesn’t exactly match the database layout. For example, we might
have a sinlge database table, with fields like title, customer, start_date, end_date. We want to display this in a Form
that’s broken up into two FieldSets. Without deep children, the FieldSets would have to have ids, and field makes
would be dotted, like info.title. The deep children feature lets us set the id to None:

class MyForm(twf.Form):
class child(twc.CompoundWidget):

class info(twf.TableFieldSet):
id = None

(continues on next page)

1.6. Design 39

ToscaWidgets2 Documentation, Release 2.2.9

(continued from previous page)

title = twf.TextField()
customer = twf.TextField()

class dates(twf.TableFieldSet):
id = None
start_date = twf.TextField()
end_date = twf.TextField()

When a value like {'title': 'my title'} is passed to MyForm, this will propagate correctly.

1.6.3 Template

Every widget can have a template. Toscawidgets has some template-language hooks which currently support Genshi,
Mako, Jinja2, Kajiki, and Chameleon.

At one point, ToscaWidgets2 aimed to support any templating engine that supported the buffet interface, (an initia-
tive by the TurboGears project to create a standard interface for template libraries). In practice though, there are more
differences between template engines than the buffet interface standardises so this approach has been dropped.

The template parameter takes the form engine_name:template_path. The engine_name is the name
that the template engine defines in the python.templating.engines entry point, e.g. genshi, mako, or
jinja. The template_path is a string the engine can use to locate the template; usually this is dot-notation that
mimics the semantics of Python’s import statement, e.g. myapp.templates.mytemplate. Templates also allow
specifications like ./template.html which is beneficial for simple applications.

It is also possible to allow your widget to utilize multiple templates, or to have TW2 support any template language
you provide a template for. To do this, simply leave the name of the template engine off of the template parameter,
and TW2 will select the appropriate template, based on specifications in the TW2 middleware.

For instance, you might have a form.mak and a form.html template (mako and genshi). TW2 will render the mako
template if mako is listed ahead of genshi in the middleware config’s preferred_rendering_engines. See the
documentation regarding Enabling ToscaWidgets for more information on how to set up your middleware for desired
output.

1.6.4 Non-template Output

Instead of using a template, a widget can also override the generate_output method. This function generates the
HTML output for a widget; by default, it renders the widget’s template as described in the previous section, but can
be overridden by any function that returns a string of HTML.

1.6.5 Resources

Widgets often need to access resources, such as JavaScript or CSS files. A key feature of widgets is the ability to
automatically serve such resources, and insert links into appropriate sections of the page, e.g. <HEAD>. There are
several parts to this:

• Widgets can define resources they use, using the resources parameter.

• When a resource is defined, it is registered with the resource server.

• When a Widget is displayed, it registers resources in request-local storage.

• The resource injection middleware detects resources in request-local storage, and rewrites the generated page to
include appropriate links.

• The resource server middleware serves static files used by widgets

40 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

• Widgets can also access resources at display time, e.g. to get links

• Resources can themselves declare dependency on other resources, e.g. jquery-ui.js depends on jquery.js and
must be included on the page subsequently.

Defining Resources

To define a resource, just add a tw2.core.Resource subclass to the widget’s resources parameter. It is also
possible to append to resources from within the prepare() method. The following resource types are available:

See Resources

Resources are widgets, but follow a slightly different lifecycle. Resource subclasses are passed into the resources
parameter. An instance is created for each request, but this is only done at the time of the parent Widget’s display()
method. This gives widgets a chance to add dynamic resources in their prepare() method.

Using Your Own Resources

Resources that are defined by pre-existing tw2 packages can be altered globally. For instance, say that you want to use
your own patched version of jquery and you want all tw2 packages that require jquery to use your version, and not the
one already packaged up in tw2.jquery. The following code will alter jquery_js in not just the local scope, but
also in all other modules that use it (including tw2.jqplugins.ui):

import tw2.jquery
tw2.jquery.jquery_js.link = "/path/to/my/patched/jquery.js"

Deploying Resources

If running behind mod_wsgi, tw2 resource provisioning will typically fail. Resources are only served when they are
registered with the request-local thread, and resources are only registered when their dependant widget is displayed
in a request. An initial page request may make available resource A, but the subsequent request to actually retrieve
resource A will not have that resource registered.

To solve this problem (and to introduce a speed-up for production deployment), Toscawidgets2 provides an
archive_tw2_resources distutils command:

$ python setup.py archive_tw2_resources \
--distributions=myapplication \
--output=/var/www/myapplication

1.6.6 Declarative Instantiation

Instantiating compound widgets can result in less-than-beautiful code. To help alleviate this, widgets can be defined
declaratively, and this is the recommended approach. A definition looks like this:

class MovieForm(twf.TableForm):
id = twf.HiddenField()
year = twf.TextField()
desc = twf.TextArea(rows=5)

Any class members that are subclasses of Widget become children. All the children get their id from the name of the
member variable. Note: it is important that all children are defined like id = twf.HiddenField() and not id
= twf.HiddenField. Otherwise, the order of the children will not be preserved.

It is possible to define children that have the same name as parameters, using this syntax. However, doing so does
prevent a widget overriding a parameter, and defining a child with the same name. If you need to do this, you must
use a throwaway name for the member variable, and specify the id explicitly, e.g.:

1.6. Design 41

ToscaWidgets2 Documentation, Release 2.2.9

class MovieForm(twf.TableForm):
resources = [my_resource]
id = twf.HiddenField()
noname = twf.TextArea(id='resources')

Nesting and Inheritence

Nested declarative definitions can be used, like this:

class MyForm(twf.Form):
class child(twf.TableLayout):

b = twf.TextArea()
x = twf.Label(text='this is a test')
c = twf.TextField()

Inheritence is supported - a subclass gets the children from the base class, plus any defined on the subclass. If there’s
a name clash, the subclass takes priority. Multiple inheritence resolves name clashes in a similar way. For example:

class MyFields(twc.CompoundWidget):
b = twf.TextArea()
x = twf.Label(text='this is a test')
c = twf.TextField()

class TableFields(MyFields, twf.TableLayout):
pass

class ListFields(MyFields, twf.ListLayout):
b = twf.TextField()

Proxying children

Without this feature, double nesting of classes is often necessary, e.g.:

class MyForm(twf.Form):
class child(twf.TableLayout):

b = twf.TextArea()

Proxying children means that if RepeatingWidget or DisplayOnlyWidget have children set, this is passed
to their child. The following is equivalent to the definition above:

class MyForm(twf.Form):
child = twf.TableLayout()
b = twf.TextArea()

And this is used by classes like TableForm and TableFieldSet to allow the user more concise widget definitions:

class MyForm(twf.TableForm):
b = twf.TextArea()

Automatic ID

Sub classes of Page that do not have an id, will have the id automatically set to the name of the class. This can be
disabled by setting _no_autoid on the class. This only affects that specific class, not any subclasses.

1.6.7 Widgets as Controllers

Sometimes widgets will want to define controller methods. This is particularly useful for Ajax widgets. Any wid-
get can have a request() method, which is called with a WebOb Request object, and must return a WebOb

42 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

Response object, like this:

class MyWidget(twc.Widget):
id = 'my_widget'
@classmethod
def request(cls, req):

resp = webob.Response(request=req, content_type="text/html; charset=UTF8")
...
return resp

For the request() method to be called, the widget must be registered with the ControllersApp in the middle-
ware. By default, the path is constructed from /controllers/, and the widget’s id. A request to /controllers/ refers to a
widget with id index. You can specify controllers_prefix in the configuration.

For convenience, widgets that have a request() method, and an id will be registered automatically. By default,
this uses a global ControllersApp instance, which is also the default controllers for make_middleware(). If
you want to use multiple controller applications in a single python instance, you will need to override this.

You can also manually register widgets:

twc.core.register_controller(MyWidget, 'mywidget')

Sometimes it is useful to dynamically acquire what URL path a Widget’s controller is mounted on. For this you can
use:

MyWidget.controller_path()

Methods to override

view_request Instance method - get self and req. load from db

validated_request Class method - get cls and validated data

ajax_request Return python data that is automatically converted to an ajax response

1.6.8 Validation

One of the main features of any forms library is the validation of form input, e.g checking that an email address is
valid, or that a user name is not already taken. If there are validation errors, these must be displayed to the user in a
helpful way. Many validation tasks are common, so these should be easy for the developer, while less-common tasks
are still possible.

We can configure validation on form fields like this:

class child(twf.TableForm):
name = twf.TextField(validator=twc.Required)
group = twf.SingleSelectField(options=['', 'Red', 'Green', 'Blue'])
notes = twf.TextArea(validator=twc.StringLengthValidator(min=10))

To enable validation we also need to modify the application to handle POST requests:

def app(environ, start_response):
req = wo.Request(environ)
resp = wo.Response(request=req, content_type="text/html; charset=UTF8")
if req.method == 'GET':

resp.body = MyForm.display().encode('utf-8')
elif req.method == 'POST':

try:
(continues on next page)

1.6. Design 43

ToscaWidgets2 Documentation, Release 2.2.9

(continued from previous page)

data = MyForm.validate(req.POST)
resp.body = 'Posted successfully ' + wo.html_escape(repr(data))

except twc.ValidationError, e:
resp.body = e.widget.display().encode('utf-8')

return resp(environ, start_response)

If you submit the form with some invalid fields, you should see error messages sidle up to each relevant field.

Whole Form Message

If you want to display a message at the top of the form, when there are any errors, define the following validator:

class MyFormValidator(twc.Validator):
msgs = {

'childerror': ('form_childerror', 'There were problems with the details you
→˓entered. Review the messages below to correct your submission.'),

}

And in your form:

validator = MyFormValidator()

Conversion

Validation is also responsible for conversion to and from python types. For example, the DateValidator takes a string
from the form and produces a python date object. If it is unable to do this, that is a validation failure.

To keep related functionality together, validators also support coversion from python to string, for display. This should
be complete, in that there are no python values that cause it to fail. It should also be precise, in that converting from
python to string, and back again, should always give a value equal to the original python value. The converse is not
always true, e.g. the string “1/2/2004” may be converted to a python date object, then back to “01/02/2004”.

Validation Errors

When there is an error, all fields should still be validated and multiple errors displayed, rather than stopping after the
first error.

When validation fails, the user should see the invalid values they entered. This is helpful in the case that a field
is entered only slightly wrong, e.g. a number entered as “2,000” when commas are not allowed. In such cases,
conversion to and from python may not be possible, so the value is kept as a string. Some widgets will not be able to
display an invalid value (e.g. selection fields); this is fine, they just have to do the best they can.

When there is an error is some fields, other valid fields can potentially normalise their value, by converting to python
and back again (e.g. 01234 -> 1234). However, it was decided to use the original value in this case.

In some cases, validation may encounter a major error, as if the web user has tampered with the HTML source.
However, we can never be completely sure this is the case, perhaps they have a buggy browser, or caught the site in the
middle of an upgrade. In these cases, validation will produce the most helpful error messages it can, but not attempt
to identify which field is at fault, nor redisplay invalid values.

Required Fields

If a field has no value, if defaults to None. It is down to that field’s validator to raise an error if the field is required.
By default, fields are not required. It was considered to have a dedicated Missing class, but this was decided against,
as None is already intended to convey the absence of data.

Security Consideration

When a widget is redisplayed after a validation failure, it’s value is derived from unvalidated user input. This means
widgets must be “safe” for all input values. In practice, this is almost always the case without great care, so widgets
are assumed to be safe.

44 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

Warning: If a particular widget is not safe in this way, it must override _validate() and set value to None
in case of error.

Validation Messages

When validation fails, the validator raises ValidationError. This must be passed the short message name, e.g.
“required”. Each validator has a dictionary mapping short names to messages that are presented to the user, e.g.:

msgs = {
'tooshort': 'Value is too short',
'toolong': 'Value is too long',

}

Messages can be overridden on a global basis, using validator_msgs on the middleware configuration. For
example, the user may prefer “Value is required” instead of the default “Enter a value” for a missing field.

A Validator can also rename mesages, by specifying a tuple in the msgs dict. For example,
ListLengthValidator is a subclass of LengthValidator which raises either tooshort or toolong.
However, it’s desired to have different message names, so that any global override would be applied separately. The
following msgs dict is used:

msgs = {
'tooshort': ('list_tooshort', 'Select at least $min'),
'toolong': ('list_toolong', 'Select no more than $max'),

}

Within the messages, tags like $min are substituted with the corresponding attribute from the validator. It is not
possible to specify the value in this way; this is to discourage using values within messages.

FormEncode

Earlier versions of ToscaWidgets used FormEncode for validation and there are good reasons for this. Some aspects
of the design work very well, and FormEncode has a lot of clever validators, e.g. the ability to check that a post code
is in the correct format for a number of different countries.

However, there are challenges making FormEncode and ToscaWidgets work together. For example, both libraries store
the widget hierarchy internally. This makes implementing some features (e.g. strip_name and tw2.dynforms.
HidingSingleSelectField) difficult. There are different needs for the handling of unicode, leading ToscaW-
idgets to override some behaviour. Also, FormEncode just does not support client-side validation, a planned feature of
ToscaWidgets 2.

ToscaWidgets 2 does not rely on FormEncode. However, developers can use FormEncode validators for individual
fields. The API is compatible in that to_python() and from_python() are called for conversion and valida-
tion, and formencode.Invalid is caught. Also, if FormEncode is installed, the ValidationError class is a
subclass of formencode.Invalid.

Using Validators

There’s two parts to using validators. First, specify validators in the widget definition, like this:

class RegisterUser(twf.TableForm):
validator = twc.MatchValidator('email', 'confirm_email')
name = twf.TextField()
email = twf.TextField(validator=twc.EmailValidator)
confirm_email = twf.PasswordField()

1.6. Design 45

ToscaWidgets2 Documentation, Release 2.2.9

You can specify a validator on any widget, either a class or an instance. Using an instance lets you pass parameters to
the validator. You can code your own validator by subclassing tw2.core.Validator. All validators have at least
these parameters:

class tw2.core.Validator(**kw)
Base class for validators

required Whether empty values are forbidden in this field. (default: False)

strip Whether to strip leading and trailing space from the input, before any other validation. (default: True)

To convert and validate a value to Python, use the to_python() method, to convert back from Python, use
from_python().

To create your own validators, sublass this class, and override any of _validate_python(),
_convert_to_python(), or _convert_from_python(). Note that these methods are not meant to
be used externally. All of them may raise ValidationErrors.

Second, when the form values are submitted, call validate() on the outermost widget. Pass this a dictionary of
the request parameters. It will call the same method on all contained widgets, and either return the validated data, with
all conversions applied, or raise tw2.core.ValidationError. In the case of a validation failure, it stores the
invalid value and an error message on the affected widget.

Chaining Validators

In some cases you may want validation to succeed if any one of a number of checks pass. In other cases you may want
validation to succeed only if the input passes all of a number of checks. For this, tw2.core provides the Any and
All validators which are subclasses of the extendable CompoundValidator.

Implementation

A two-pass approach is used internally, although this is generally hidden from the developer. When Widget.
validate() is called it first calls:

tw2.core.validation.unflatten_params(params)
This performs the first stage of validation. It takes a dictionary where some keys will be compound names, such
as “form:subform:field” and converts this into a nested dict/list structure. It also performs unicode decoding,
with the encoding specified in the middleware config.

If this fails, there is no attempt to determine which parameter failed; the whole submission is considered corrupt. If the
root widget has an id, this is stripped from the dictionary, e.g. {'myid': {'param':'value', ...}} is
converted to {'param':'value', ...}. A widget instance is created, and stored in request local storage. This
allows compatibility with existing frameworks, e.g. the @validate decorator in TurboGears. There is a hook in
display() that detects the request local instance. After creating the instance, validate works recursively, using the
_validate().

Widget._validate(*args, **kw)
Inner validation method; this is called by validate and should not be called directly. Overriding this method in
widgets is discouraged; a custom validator should be coded instead. However, in some circumstances overriding
is necessary.

RepeatingWidget._validate(*args, **kw)
The value must either be a list or None. Each item in the list is passed to the corresponding child widget for
validation. The resulting list is passed to this widget’s validator. If any of the child widgets produces a validation
error, this widget generates a “childerror” failure.

CompoundWidget._validate(*args, **kw)
The value must be a dict, or None. Each item in the dict is passed to the corresponding child widget for
validation, with special consideration for _sub_compound widgets. If a child returns vd.EmptyField, that value
is not included in the resulting dict at all, which is different to including None. Child widgets with a key are

46 Chapter 1. Content

ToscaWidgets2 Documentation, Release 2.2.9

passed the validated value from the field the key references. The resulting dict is validated by this widget’s
validator. If any child widgets produce an errors, this results in a “childerror” failure.

Both _validate() and to_python() take an optional state argument. CompoundWidget and
RepeatingWidget pass the partially built dict/list to their child widgets as state. This is useful for creating valida-
tors like MatchValidator that reference sibling values. If one of the child widgets fails validation, the slot is filled
with an Invalid instance.

1.6.9 General Considerations

Request-Local Storage

ToscaWidgets needs access to request-local storage. In particular, it’s important that the middleware sees the request-
local information that was set when a widget is instatiated, so that resources are collected correctly.

The function tw2.core.request_local returns a dictionary that is local to the current request. Multiple calls in the same
request always return the same dictionary. The default implementation of request_local is a thread-local system, which
the middleware clears before and after each request.

In some situations thread-local is not appropriate, e.g. twisted. In this case the application will need to monkey patch
request_local to use appropriate request_local storage.

pkg_resources

tw2.core aims to take advantage of pkg_resources where it is available, but not to depend on it. This allows tw2.core
to be used on Google App Engine. pkg_resources is used in two places:

• In ResourcesApp, to serve resources from modules, which may be zipped eggs. If pkg_resources is not available,
this uses a simpler system that does not support zipped eggs.

• In EngingeManager, to load a templating engine from a text string, e.g. “genshi”. If pkg_resources is not
available, this uses a simple, built-in mapping that covers the most common template engines.

Framework Interface

ToscaWidgets is designed to be standalone WSGI middeware and not have any framework interactions. However,
when using ToscaWidgets with a framework, there are some configuration settings that need to be consistent with
the framework, for correct interaction. Future vesions of ToscaWidgets may include framework-specific hooks to
automatically gather this configuration. The settings are:

• default_view - the template engine used by the framework. When root widgets are rendered, they will return a
type suitable for including in this template engine. This setting is not needed if only Page widgets are used as
root widgets, as there is no containing template in that case.

• translator - needed for ToscaWidget to use the same i18n function as the framework.

Unit Tests

To run the tests, in tw2.devtools/tests issue:

nosetests --with-doctest --doctest-extension=.txt

1.7 Changelog

1.7.1 2.3.0

• Support overriding fields in subclasses of a Form

1.7. Changelog 47

ToscaWidgets2 Documentation, Release 2.2.9

• Support for formencode validators in CompoundValidator

1.7.2 2.2.9

• Fix loading of templates on some systems where system encoding is not UTF8 (templates are always loaded as
utf8)

1.7.3 2.2.7

• Fix support for Python3.8 removing cgi.escape

• Fix deprecated support for absolute paths in resource_filename

1.7.4 2.2.6

• New Documentation

1.7.5 2.2.5

• Added english transation, so that the gettext translator finds it and prefers english when multiple languages are
involved and english is the favourite one.

• Fixed an issue with i18n translator on Python3

1.7.6 2.2.4

• Templating now uses render_unicode to render mako templates and avoid unicode dance ecc33fc

• Avoid modifying validation messages dict while iterating on it 66c7e3d

• Fix Genshi relative imports when running test suite on top directory

1.7.7 2.2.3

• Kajiki Template Engine Support

• Disallow DisplayOnlyWidget as child of RepeatingWidget as it doesn’t work anyways 4c15c5a

• Flush memozation cache when auto_reload_templates in the middleware is enabled

• Fix safe_validate with FormEncode validators 3fa88ac

1.7.8 2.2.2

• Fix CompoundWidget and MatchValidator

• Fix archive_tw2_resources 8956e83

• Fix DateValidator and DateTimeValidator to be in sync with tw2.forms 06da5b9

48 Chapter 1. Content

https://github.com/toscawidgets/tw2.core/commit/ecc33fc211b904c5aa0c88647245d37fe8cd7338
https://github.com/toscawidgets/tw2.core/commit/66c7e3d8d0bcae6fe6d55bd5144c7991e02fe654
https://github.com/toscawidgets/tw2.core/commit/4c15c5ae02db1956d51685b3f444cfc76fdf1e55
https://github.com/toscawidgets/tw2.core/commit/3fa88ace7d2028612d37b854a52d40ff9a654b17
https://github.com/toscawidgets/tw2.core/commit/8956e832ea3944f9f6ebd0f28d1f514644c68bcd
https://github.com/toscawidgets/tw2.core/commit/06da5b9023c576b4efb73187d53d6c9a9f691f4d

ToscaWidgets2 Documentation, Release 2.2.9

1.7.9 2.2.1

• Merge branch ‘hotfix/2.1.6’ a699822e5

• compound_key was ignoring key for RepeatingWidget ed0946146

• Fix for DisplayOnlyWidget in compound_id regression 11570e42e

• All and Any validators didn’t work with unicode error messages 3c177ad8d

• Merge branch ‘master’ of @amol-/tw2.core into develop 5254065c0

1.7.10 2.2.0.8

• Fix duplicate class name 1c133c907

• Be able to put an HTML separator between the children of a RepeatingWidget. We also need to support it for
the CompoundWidget since it uses the same template db717642d

• Merge pull request #96 from LeResKP/develop 41229bf01

• Re-enable archive_tw2_resources on Python 2 56215397a

1.7.11 2.2.0.7

• – Clean up cache * Hack to fix the tests with empty value attributes for genshi cd5febe2b

• Merge pull request #95 from LeResKP/develop 9f54d72be

• Merge branch ‘develop’ of github.com:toscawidgets/tw2.core into develop 9142fe165

1.7.12 2.2.0.6

1.7.13 2.2.0.5

• Add a setUp method back to another base test thats missing it. 55b6061ed

1.7.14 2.2.0.4

• Restore an old setUp method for tw2.core.testbase.WidgetTest da2d9bab2

1.7.15 2.2.0.3

• Added a new validator UUIDValidator (+test) for UUID/GUIDs ebea7f30b

• Merge pull request #92 from RobertSudwarts/amol 481926de6

• Call me picky, but I think license belongs up there de9d87587

• Merge branch ‘amol’ into develop 46d68b792

• pep8 5896d4db0

• Fix tests for UUIDValidator bfc4531ec

• Handle case where response.charset is None. e1fe13460

1.7. Changelog 49

https://github.com/toscawidgets/tw2.core/commit/a699822e56031a1a0aa351f7bae19ff58401af18
https://github.com/toscawidgets/tw2.core/commit/ed09461460775b9d8034ecfcb8cb8680a43c9fee
https://github.com/toscawidgets/tw2.core/commit/11570e42e4dde2b03145bec36b949ad282cce845
https://github.com/toscawidgets/tw2.core/commit/3c177ad8d5a04d2913b8f62418b9a2b0e2dbfc7b
https://github.com/toscawidgets/tw2.core/commit/5254065c01a362617956ce0adb08851884ee0596
https://github.com/toscawidgets/tw2.core/commit/1c133c9074aaded7823d99e3f31aaf4eab8f26d8
https://github.com/toscawidgets/tw2.core/commit/db717642dff0b5b3cb69e7e3929a0ceaf08a2a54
https://github.com/toscawidgets/tw2.core/commit/41229bf01b079f49d4ba8747d2f530f4d0eddf99
https://github.com/toscawidgets/tw2.core/commit/56215397a2e5e373ca5dd44c28fedc4fc66c5d19
https://github.com/toscawidgets/tw2.core/commit/cd5febe2bc6c675fa8c7320731d4fe98c603c42d
https://github.com/toscawidgets/tw2.core/commit/9f54d72be754c6087a0a780c6d89e4761924af23
https://github.com/toscawidgets/tw2.core/commit/9142fe165139db87c761ca4ed17f673244e5a9b7
https://github.com/toscawidgets/tw2.core/commit/55b6061edf0264426910d1a19f5641ff0c3cf7a0
https://github.com/toscawidgets/tw2.core/commit/da2d9bab2db86f2378525ad0930af3b1e48e3622
https://github.com/toscawidgets/tw2.core/commit/ebea7f30b892eb426ca788b26112b5db6d845260
https://github.com/toscawidgets/tw2.core/commit/481926de62e14d37e1b102b7d8734a8cc576f9c2
https://github.com/toscawidgets/tw2.core/commit/de9d8758795fb94662ff79b075cf125e6c7f6fb5
https://github.com/toscawidgets/tw2.core/commit/46d68b792f2076e5862730abf464dbf3ec93362b
https://github.com/toscawidgets/tw2.core/commit/5896d4db0d71d47641732423e7363a19cb8cd72f
https://github.com/toscawidgets/tw2.core/commit/bfc4531ecfb55a18a13827ad893469623f1b2aa1
https://github.com/toscawidgets/tw2.core/commit/e1fe134605767385c3554d58066776596e8d9fba

ToscaWidgets2 Documentation, Release 2.2.9

• Merge branch ‘develop’ of github.com:toscawidgets/tw2.core into develop 4fec80d22

1.7.16 2.2.0.2

• Update one test now that the error message has changed. c31f52732

• Catch if a template is None. a159b6cf1

• Remove direct dependence on unittest so we can get test-generators working again. Relates to #88. f561ef33d

• Turn the css/js escaping tests into generators per engine too. c43bd4d7f

• Kajiki expects unicode these days. 16f6508c2

• Mark this test really as skipping. b59d1ff05

• Skip tests on weird kajiki behavior. . . . 11285aa68

• Drop python-3.2 support since our deps dont support it. 0f777ea68

• Kill kajiki. ea14b79f1

• Merge pull request #94 from toscawidgets/feature/yielding-again 30e4c4b3d

• Metadata fixups, #90 38e306f88

• Imported doc fragments from tw2.forms 894b28540

1.7.17 2.2.0.1

• Provide more info in this traceback. 77efa240f

• Variable, not Param. 03991510e

• Update TG2 tutorial to current state of affairs cb481999a

• Make some things non-required that were newly required. 14507319d

• Merge branch ‘develop’ of github.com:toscawidgets/tw2.core into develop f5a00e83d

1.7.18 2.2.0

• Support more webob versions. Fixes #77 e071e9d33

• Constrain webtest version for py2.5. 1214057c1

• Port to python2/python3 codebase. c1d2b7721

• Travis-CI config update. 21a35d470

• Some py3 fixes for tw2.forms. c82fb090f

• @moschlar on the ball. 8b5cdcb81

• Some setup for a port of tw2.devtools to gearbox. 08fd64a11

• Merge branch ‘feature/2.2’ into develop 4aef579c7

• Mention tw2.core.DirLink in the docs. Fixes #69. dce1db697

• Reference gearbox tw2.browser in the docs. 2562933ee

• Include translations in distribution. 2791169fa

50 Chapter 1. Content

https://github.com/toscawidgets/tw2.core/commit/4fec80d221fe423c89485d3871073994bd3850ed
https://github.com/toscawidgets/tw2.core/commit/c31f52732ed6cd7cbe8dce6fd0671253721c5062
https://github.com/toscawidgets/tw2.core/commit/a159b6cf1bf28f29063dcd00bd7db9af4d082985
https://github.com/toscawidgets/tw2.core/commit/f561ef33d277401e661413e47d0a14249389fcb2
https://github.com/toscawidgets/tw2.core/commit/c43bd4d7f9b8855f2db417f4a5051a1bdb685b6f
https://github.com/toscawidgets/tw2.core/commit/16f6508c2928972be2a9f9001ea4ad9cf36bf8b0
https://github.com/toscawidgets/tw2.core/commit/b59d1ff05c944257a8ab1a5cc27e40bb8435b07e
https://github.com/toscawidgets/tw2.core/commit/11285aa680124438b4bd11617c34c0ee779f1eb2
https://github.com/toscawidgets/tw2.core/commit/0f777ea68079b3cec51e0f64b0b5fa8c8c6a06f0
https://github.com/toscawidgets/tw2.core/commit/ea14b79f199f527904ee87a8f0227039b04e0f7a
https://github.com/toscawidgets/tw2.core/commit/30e4c4b3d1bdda1a04c72b857cf24dbc1d6297cc
https://github.com/toscawidgets/tw2.core/commit/38e306f88f6528216d6437b0f905a82f0060b8a5
https://github.com/toscawidgets/tw2.core/commit/894b285407f7548d3a145b999aed40a4ce7283e5
https://github.com/toscawidgets/tw2.core/commit/77efa240f601d0859a19ee6f9796c1e0d69acb0b
https://github.com/toscawidgets/tw2.core/commit/03991510ed7c3b5bbfdf188c70d093cdfd7ffefc
https://github.com/toscawidgets/tw2.core/commit/cb481999a9a696369fd33115b29a7114d3086d72
https://github.com/toscawidgets/tw2.core/commit/14507319dabd84ec6175232c15551709623f7f48
https://github.com/toscawidgets/tw2.core/commit/f5a00e83d6c02aa22f27cb177bd47cd2b6b82110
https://github.com/toscawidgets/tw2.core/commit/e071e9d3386c7d73ce6037ba7fac7ff0527b1f5b
https://github.com/toscawidgets/tw2.core/commit/1214057c1e00f896fc7d2c2f48b662325199a127
https://github.com/toscawidgets/tw2.core/commit/c1d2b772163d13b310ffaccc6a9453290e3e447e
https://github.com/toscawidgets/tw2.core/commit/21a35d4706f4f101aee22283489a6216a017fe54
https://github.com/toscawidgets/tw2.core/commit/c82fb090fde1ced3b9ad0e8befb5ae1516f1230c
https://github.com/toscawidgets/tw2.core/commit/8b5cdcb813a99789ce560ef71fae4e68de35d314
https://github.com/toscawidgets/tw2.core/commit/08fd64a110449f87dab83c09e091fa5c04c95186
https://github.com/toscawidgets/tw2.core/commit/4aef579c77c62229d9f23c0018cfdeec73311514
https://github.com/toscawidgets/tw2.core/commit/dce1db6979d3c3abfae5ca10f05ad536b5a3347d
https://github.com/toscawidgets/tw2.core/commit/2562933ee6868451fe7de8d65f8ad6f6b01034be
https://github.com/toscawidgets/tw2.core/commit/2791169fa7a5d69e7c46ca2cdbf545e24d0752fb

ToscaWidgets2 Documentation, Release 2.2.9

• Merge pull request #82 from Cito/develop f6d1f0502

• Fix #84 in archive_tw2_resources 02eec525f

• Merge pull request #85 from toscawidgets/feature/archive_tw2_resources 8791c3236

• Add a failing test for #25. 5d7b43a9f

• Automatically assign widgets an ID. ca81db016

• Enforce twc.Required (for #25). 94e61ec52

• Deal with faulout from the twc.Required enforcement. b5063a3c7

• Merge pull request #87 from toscawidgets/feature/twc.Required 5add35cb9

• Method generators are not supported in unittest.TestCase subclasses. 30cb85826

• Support if_empty and let BoolValidator validate None to False. a9d48944a

• Merge pull request #88 from Cito/develop 2416cefb8

• Merge branch ‘hotfix/2.1.6’ a699822e5

• Merge branch ‘hotfix/2.1.6’ into develop dc99409b9

• Remove the spec file. Fedora has it now. 004c3eda6

1.7.19 2.1.6

• Fix #84 in archive_tw2_resources 65493f6ab

• Support if_empty and let BoolValidator validate None to False. 4008ee77d

• 2.1.6 146d17261

1.7.20 2.1.5

• Make sure future-queued resources make it into the middleware. adb4aec79

1.7.21 2.1.4

• Simplify the validator API and make it compatible with FormEncode. 5e5f91afa

• Merge pull request #75 from Cito/develop eb74470c6

1.7.22 2.1.3

• Validation docs. 4132ff5f6

• Typo fix. Thanks Daniel Lepage. 0fbed935c

• Fixes to tests busted by the introduction of CSSSource. b795f3f2b

• More descriptive ParameterError for invalid ids. 6c06384ff

• Windows support for resource serving. 0b939179a

• Added a half-done test of the chained js feature. fe6924f89

• We won’t actually deprecate tw1-style calling. f63a37c51

1.7. Changelog 51

https://github.com/toscawidgets/tw2.core/commit/f6d1f0502b2463ada4bf43c34b2671bc3fa7ce22
https://github.com/toscawidgets/tw2.core/commit/02eec525f83077d4bb1541e67c9ca5e40a971f1b
https://github.com/toscawidgets/tw2.core/commit/8791c323653f177eff95c9abcb00cd37e9b76a56
https://github.com/toscawidgets/tw2.core/commit/5d7b43a9f41f7ae2b4f9a7d54792734ddbccdf49
https://github.com/toscawidgets/tw2.core/commit/ca81db016c06583e37f573c8bec815e7c084dc1a
https://github.com/toscawidgets/tw2.core/commit/94e61ec529a6ca04581435c1d579e05f5bf8b058
https://github.com/toscawidgets/tw2.core/commit/b5063a3c72b01f4ffd06bd4eec2f11e162ec4c35
https://github.com/toscawidgets/tw2.core/commit/5add35cb9fb1a9e10dab0f5fe37faf4fbf42eca9
https://github.com/toscawidgets/tw2.core/commit/30cb8582692b64f75a22bfe62c89e58db49b9dae
https://github.com/toscawidgets/tw2.core/commit/a9d48944a8aa70e2d162b85a154b314fe33c3c8e
https://github.com/toscawidgets/tw2.core/commit/2416cefb82ee7805308c61af2bcb4d179a3d0c7c
https://github.com/toscawidgets/tw2.core/commit/a699822e56031a1a0aa351f7bae19ff58401af18
https://github.com/toscawidgets/tw2.core/commit/dc99409b970a477a3b2c75096bbf536600a61448
https://github.com/toscawidgets/tw2.core/commit/004c3eda654a100925bab18df09985fdcf7406bc
https://github.com/toscawidgets/tw2.core/commit/65493f6ab07b20dc05f1559f6744ac05b688c851
https://github.com/toscawidgets/tw2.core/commit/4008ee77de53a797fcb336c8643dc9a4b6c4a017
https://github.com/toscawidgets/tw2.core/commit/146d17261fd03c898f53b13300e30b37f642ac16
https://github.com/toscawidgets/tw2.core/commit/adb4aec7922f68a11c726629bc916d6968b3cecc
https://github.com/toscawidgets/tw2.core/commit/5e5f91afabdef0e54d585acaec2c10f40773f765
https://github.com/toscawidgets/tw2.core/commit/eb74470c69546eb5e4ae9576cbb60e340b520a8e
https://github.com/toscawidgets/tw2.core/commit/4132ff5f631794579590499512b14eb0412a6c39
https://github.com/toscawidgets/tw2.core/commit/0fbed935c39a38da5046ea4f37f1861bca1c88c1
https://github.com/toscawidgets/tw2.core/commit/b795f3f2b68964d5d40908fc3004e4443274213d
https://github.com/toscawidgets/tw2.core/commit/6c06384ff72e306029bcef3f8cdde00e7b833690
https://github.com/toscawidgets/tw2.core/commit/0b939179abbd18eca7987ae6b31ad21e39c9a3d0
https://github.com/toscawidgets/tw2.core/commit/fe6924f896e64c6244551b47728a91c512dc16ee
https://github.com/toscawidgets/tw2.core/commit/f63a37c51a27ef1324125d02559a0680f89af9d5

ToscaWidgets2 Documentation, Release 2.2.9

• Merge branch ‘develop’ into feature/chained-js-calls c5e3f6a1f

• Added class_or_instance properties fb9211eb0

• Revert “Added class_or_instance properties” 25df3bd3a

• Chaining js calls are back in action. eb7ef5056

• Merge branch ‘feature/chained-js-calls’ into develop 612d52a88

• Version for 2.0.0. 03f6d1280

• Forgot the damn classifier. a780af954

• Merge branch ‘hotfix/classifier’ df2556fec

• Merge branch ‘hotfix/classifier’ into develop 22b667946

• Add coverage to the standard test process. 99400078e

• When widgets have key they should be validated by key and not be id edc575014

• Re-added ancient/missing js_function __str__ behavior discovered in the bowels of moksha. 1d45fe424

• Demoted queued registration messages from “info” to “debug”. be23347d1

• Clutch simplejson hacking. fb7c06b66

• Encoding widgets works again. 07fb3c94b

• More PEP8. b387fa470

• Found the killer test. d81926c5a

• Update to that test. 152650597

• A stab at handling function composition. Tests pass. 7ae78e03b

• This is clearly unsustainable. c96fb2898

• Solve the function composition problem. ff432f26a

• Merge branch ‘feature/function-composition’ into develop 5f46d5069

• Some comments in the encoder initialization. a479c7aa5

• The output of this test changes depending on what other libs are installed. 1b4306160

• Abstracted ResourceBundle out of Resource for tw2.jqplugins.ui. 56a6ba35a

• When widget has key and so gets data by key validation was still returning data by id. Now validation returns
data by key when available. Also simplify CompoundWidget validation fa197ba30

• Cover only the tw2.core package 75001ec74

• Fix regression in tw2.sqla. f6089fd7f

• Revert CompoundValidation tweak. Works with tw2.sqla now. Fixes #9. 032994731

• Added a test case for amol’s validation situation. 06ac1b3fb

• Supress top-level validator messages if they also apply messages to compound widget children. c144b01f3

• Correctly supress top-level validator messages. 8b15822e1

• Write test to better test CompoundWidget error reporting 74dd87075

• Handle unspecified childerror case uncovered by latest test. e94c80341

• Differentiated test names. 5a7ef40cc

52 Chapter 1. Content

https://github.com/toscawidgets/tw2.core/commit/c5e3f6a1fb781e85648ba78f6ef09d7a81fa01da
https://github.com/toscawidgets/tw2.core/commit/fb9211eb09f055b336d1a6d3f32c590043a20536
https://github.com/toscawidgets/tw2.core/commit/25df3bd3a06dafb6d42ebed4cde0b7c3733932dc
https://github.com/toscawidgets/tw2.core/commit/eb7ef5056f00b6f143e36d57a75d1269271f5737
https://github.com/toscawidgets/tw2.core/commit/612d52a88e1c8128615b70a43afe90d370a4d3d6
https://github.com/toscawidgets/tw2.core/commit/03f6d1280a17dae3ac2c0f7a33856d65fa0954b2
https://github.com/toscawidgets/tw2.core/commit/a780af954ff1279a840c204ea3212d14567d50cb
https://github.com/toscawidgets/tw2.core/commit/df2556fec9f3ab0ec324ce2184e3f65c067ffc0b
https://github.com/toscawidgets/tw2.core/commit/22b667946d6a7fa3ca71d243cffaee4c18463fb0
https://github.com/toscawidgets/tw2.core/commit/99400078e7d13888951c3d9ca51a343a927ed991
https://github.com/toscawidgets/tw2.core/commit/edc5750145fe1e939208daaf4eef6c834d100c92
https://github.com/toscawidgets/tw2.core/commit/1d45fe4242d9db17cce8773676f2b77675e8e1d5
https://github.com/toscawidgets/tw2.core/commit/be23347d104623355b3664296e11fb0d5c72bd5d
https://github.com/toscawidgets/tw2.core/commit/fb7c06b661fa57cb0fe24a0f9d6f82dc987e1a5d
https://github.com/toscawidgets/tw2.core/commit/07fb3c94b2eb9b52066bb47c883e57041df6847a
https://github.com/toscawidgets/tw2.core/commit/b387fa47025c4d09ba8c28bce7895215ac5b417d
https://github.com/toscawidgets/tw2.core/commit/d81926c5a1108079e5a2525e456ad6a077c776d9
https://github.com/toscawidgets/tw2.core/commit/152650597568ce0040fef9442cdb69cda38a899b
https://github.com/toscawidgets/tw2.core/commit/7ae78e03bd791f85d447fc0e3f6b7a6f4f392f74
https://github.com/toscawidgets/tw2.core/commit/c96fb28988f596da3253c25ed8f17527cb9141ca
https://github.com/toscawidgets/tw2.core/commit/ff432f26a5c0656c17b85a5d4ef57a8050e93ede
https://github.com/toscawidgets/tw2.core/commit/5f46d506935c1ca9f97923d25b22ae89a9098fcb
https://github.com/toscawidgets/tw2.core/commit/a479c7aa54bddac443922d05e0cd3c9699e6b1de
https://github.com/toscawidgets/tw2.core/commit/1b4306160dd68898aab617cc2f5c373f1116bea1
https://github.com/toscawidgets/tw2.core/commit/56a6ba35abdc51b9f48f17385fc5e55c4463260b
https://github.com/toscawidgets/tw2.core/commit/fa197ba30ace8540786f0ea79502074e5c66c15b
https://github.com/toscawidgets/tw2.core/commit/75001ec74fafd35dee012ca3f5b7603b6288768a
https://github.com/toscawidgets/tw2.core/commit/f6089fd7f0caff96063ffb72a67556ca8f7d333a
https://github.com/toscawidgets/tw2.core/commit/0329947311d9538ac0f299fcfbe87cb1f20dc477
https://github.com/toscawidgets/tw2.core/commit/06ac1b3fb78a5c2c7187e8556adc6a42836f5eba
https://github.com/toscawidgets/tw2.core/commit/c144b01f3dd6d4b3e9a61da5e647fd9946c2e11c
https://github.com/toscawidgets/tw2.core/commit/8b15822e1ad6c29ff6f1d4ca31c4bd1db3da2aae
https://github.com/toscawidgets/tw2.core/commit/74dd87075b5e3f82ce9c9fb4768326bdf4484d8d
https://github.com/toscawidgets/tw2.core/commit/e94c8034173c461074f4d2364d32f8f3dc3ee871
https://github.com/toscawidgets/tw2.core/commit/5a7ef40cc09934b95d0d2e31cc5ab751774f7b22

ToscaWidgets2 Documentation, Release 2.2.9

• Compatibility with dreadpiratebob and percious’s tree. af7a2e6b8

• Avoid receiving None instead of the object itself when object evaluates to False e8c513c3a

• 2.0.1 release. c056c88f6

• Initial RPM spec. 12cec0ed8

• Rename. 5ebc78d87

• Removed changelog. It’s from the way back tw1 days. eb5fdcc65

• Skipping tests that rely on tw2.forms and yuicompressor. c7ae7984a

• We don’t actually require weberror. 7b269e77e

• Include test data for koji builds. 3f61860d3

• First iteration of the new rpm. It actually built in koji. 6b924cdda

• exception value wasn’t required and breaks compatibility with Python2.5 de857ce6e

• Merge pull request #16 from amol-/develop 0e9faf439

• More Py2.5 compat. 057ac45bb

• 2.0.2 release with py2.5 bugfixes for TG. bd8304957

• Specfile update for 2.0.2. d9aeb76b3

• Changed executable bit for files that should/shouldn’t have it. 4d77e3043

• Exclude .pyc files from template directories. 4d281c684

• Version bump for rpm fixes. a76db4c94

• Remove pyc files from the sdist package. Weird. da3ddaea1

• Switched links in the doc from old blog to new blog. 8f7332fd1

• Be more careful with the multiprocessing,logging import hack. a8857267e

• Compatibility with older versions of simplejson. 64d16f234

• Test suite fixes on py2.6. e37b7e1c6

• 2.0.4 with improved py2.6 support. 7b6784e1d

• A little more succint in the middleware. 5cc582cd9

• Allow streaming html responses to pass through the middleware untouched. 3f4a5a4b9

• Simple formatting in the spec. d7020a9fa

• Version bump. 48768720b

• Stripped out explicit references to kid and cheetah. 595ba7c6c

• Removed unused reference to reset_engine_name_cache. 0e4c40e64

• Removed unnecessary “reset_engine_name_cache” 2b3ed27a7

• Removed a few leftover references to kid. 1755fd14a

• More appropriate variable name. 1c27c620a

• First rewrite of templating system. 283367bb8

• Template caching. 4d16358e0

• First stab at jinja2 support. 17d17234a

1.7. Changelog 53

https://github.com/toscawidgets/tw2.core/commit/af7a2e6b867bca63b09b5be90f2ca01bfb506f4b
https://github.com/toscawidgets/tw2.core/commit/e8c513c3a7b9b3a753937b69cae80b790dde90f1
https://github.com/toscawidgets/tw2.core/commit/c056c88f6b2627c2ed0bdd07026508580da0ea2e
https://github.com/toscawidgets/tw2.core/commit/12cec0ed8f656b3da5167953cffe4fffe2191596
https://github.com/toscawidgets/tw2.core/commit/5ebc78d87b08f6a3f855b35aa4ff3ef02b162b1b
https://github.com/toscawidgets/tw2.core/commit/eb5fdcc6565726a119187571114c8b89dba9b058
https://github.com/toscawidgets/tw2.core/commit/c7ae7984abfb3c6f503ebd98e72463a81d286d2c
https://github.com/toscawidgets/tw2.core/commit/7b269e77e3fffb39d571106a0c787e133a813a9a
https://github.com/toscawidgets/tw2.core/commit/3f61860d34abeff824d98bb4395a26c50545d9b6
https://github.com/toscawidgets/tw2.core/commit/6b924cdda03d134f728721a9424ade88bd853336
https://github.com/toscawidgets/tw2.core/commit/de857ce6ed4b15eeadb0433cc6ede63464dd0bcf
https://github.com/toscawidgets/tw2.core/commit/0e9faf4393b29a4b3c8f34b3f1fd041a02f7c129
https://github.com/toscawidgets/tw2.core/commit/057ac45bbba01ebd1e38144108445cd36efe11d2
https://github.com/toscawidgets/tw2.core/commit/bd830495770f95f4d0bfdfb21a98662d15f7ab30
https://github.com/toscawidgets/tw2.core/commit/d9aeb76b31687b516a2f4871a52bc70bb8500e27
https://github.com/toscawidgets/tw2.core/commit/4d77e30437be3d66aa5af9f1671d802b51e85654
https://github.com/toscawidgets/tw2.core/commit/4d281c6840edee64a58bfd4b3d17ba3f8ab92a7d
https://github.com/toscawidgets/tw2.core/commit/a76db4c942c7eeb353d02086f3b0489f64ade1bb
https://github.com/toscawidgets/tw2.core/commit/da3ddaea1a0049168a673739a87711e0c3e4fceb
https://github.com/toscawidgets/tw2.core/commit/8f7332fd150d330ef9040fe7bf1309560ebfe23f
https://github.com/toscawidgets/tw2.core/commit/a8857267e6c682fdb770b8a9d72f2de47c6fab92
https://github.com/toscawidgets/tw2.core/commit/64d16f234f8aec46a23d4a92e9da53e5e8c77a87
https://github.com/toscawidgets/tw2.core/commit/e37b7e1c6dc20bd155d59060a170a90e7d8eb204
https://github.com/toscawidgets/tw2.core/commit/7b6784e1df26079ca4e154d7bf5160f87d09f9b3
https://github.com/toscawidgets/tw2.core/commit/5cc582cd9e53cf0536ea992eec85a7c208ae068c
https://github.com/toscawidgets/tw2.core/commit/3f4a5a4b91bbea9534760d7ea3497fea0513e157
https://github.com/toscawidgets/tw2.core/commit/d7020a9fae23cdd0c7bdf7edd8cbaa7b3fb779d2
https://github.com/toscawidgets/tw2.core/commit/48768720bd5488b70116a96cbe02fad2f9eefaf4
https://github.com/toscawidgets/tw2.core/commit/595ba7c6c84e5f8201760dc96eb71b5fc8bb4058
https://github.com/toscawidgets/tw2.core/commit/0e4c40e6491783149beb7d82e0cbd092b7248dae
https://github.com/toscawidgets/tw2.core/commit/2b3ed27a7b629e997b0c48c5d7354aed181fb0b8
https://github.com/toscawidgets/tw2.core/commit/1755fd14aac5691d1688a89ad97e56b2ac7f081e
https://github.com/toscawidgets/tw2.core/commit/1c27c620a55c2db67abaf351716c1cf1fe30cc6f
https://github.com/toscawidgets/tw2.core/commit/283367bb8d0ffb54b723351862069092085b6345
https://github.com/toscawidgets/tw2.core/commit/4d16358e0a58b9d83e8e0abd8a4f364fda8ca2fe
https://github.com/toscawidgets/tw2.core/commit/17d17234ac00d12aad6e4c4de1e5a3a9f1e06469

ToscaWidgets2 Documentation, Release 2.2.9

• Update to the docs. e9658290b

• Massive dos2unix pass. For good health. e74bbc42b

• PEP8. 62d256c4d

• Reference email thread regarding “displays_on” 25ffcd339

• Added support for kajiki. f809d1a5d

• Default templates for kajiki and jinja. 9a170d3cb

• More robust testing of new templates. 55f1fbe0a

• Pass filename to mako templates for easier debugging. 5e63adcbe

• More correct dotted template loading. 07b67c84d

• Added support for chameleon. fa8c160d4

• Default chameleon templates. 69de63cf6

• Updated docs with kajiki and chameleon. ef291ce4a

• Added three tests for http://bit.ly/KNYAxq 0e775ab1e

• Resurrecting the smarter logic of the “other” tw encoder. Hurray for git history. 1379196d3

• Added test for #12. Passes. b6bbf92a4

• Use __name__ in tests. fbe2b6979

• Added failing test for Issue #18. e962a03fb

• Merge pull request #21 from toscawidgets/feature/multiline-js c9e0ada6f

• Merge branch ‘develop’ into feature/template-sys b32a024c3

• Merge branch ‘develop’ into feature/issue-18 5b1c1dadf

• Guess modname in post_define. Fixes #18. d3d2aeb35

• Merge branch ‘feature/issue-18’ into develop 4f0d496fc

• Version bump - 2.0.6. ea7637a20

• Don’t check for ‘not value’ in base to_python. Messes up on cgi.FieldStorage. 204e20fbd

• Added a note to the docs about altering JSLink links. Fixes #15. 28e458fe4

• dos2unix pass on the docs/ folder. ce4f813e7

• Typo fix. 34fee8fa9

• Trying out travis-ci. 8e9414ae0

• Trying out travis-ci. abc5b4161

• Updates for testing on py2.5 and py2.6. 56ce437ef

• Merge branch ‘develop’ 0f4b81113

• Added build table to the README. 4da336497

• Merge branch ‘develop’ into feature/template-sys 832435945

• Python2.5 support. 66e93b66d

• JS and CSSSource require a .src attr. ca02d9713

• Use mirrors for travis. b504714da

54 Chapter 1. Content

https://github.com/toscawidgets/tw2.core/commit/e9658290beebe5792cf52f3b00c4adaf24eb6920
https://github.com/toscawidgets/tw2.core/commit/e74bbc42bec3378e79d279b2d1a2d1c9682ee8fa
https://github.com/toscawidgets/tw2.core/commit/62d256c4d3b44f0f8dc206f8dada86762dc1e477
https://github.com/toscawidgets/tw2.core/commit/25ffcd33943d132308ffaa6dfea1a24ea7e7bf12
https://github.com/toscawidgets/tw2.core/commit/f809d1a5dbee8b45e624b5c954356df1b9116df9
https://github.com/toscawidgets/tw2.core/commit/9a170d3cb51e071fc3fcb1de4aeec86aa9f18d97
https://github.com/toscawidgets/tw2.core/commit/55f1fbe0a6a49bff25514cf40c7149fae43eb513
https://github.com/toscawidgets/tw2.core/commit/5e63adcbed071464ef0b10096a3338600561886b
https://github.com/toscawidgets/tw2.core/commit/07b67c84dae7d181f4e0fe24a5fe8a3423c1b6ae
https://github.com/toscawidgets/tw2.core/commit/fa8c160d4e8d8c3ab33d8433446197774730a8e2
https://github.com/toscawidgets/tw2.core/commit/69de63cf6f9d29a8431936879b7b3b60cb46dc1b
https://github.com/toscawidgets/tw2.core/commit/ef291ce4a7cd353ea1be85faed0340c06d8423e2
http://bit.ly/KNYAxq
https://github.com/toscawidgets/tw2.core/commit/0e775ab1ea81d09417e502585f452392e4646a3c
https://github.com/toscawidgets/tw2.core/commit/1379196d338e801c04080a63843ab138077683b6
https://github.com/toscawidgets/tw2.core/commit/b6bbf92a4ff87135dcc2a4af23b0bef7e677a125
https://github.com/toscawidgets/tw2.core/commit/fbe2b697930e6a8ff9a124a4aab27ba34e7c3def
https://github.com/toscawidgets/tw2.core/commit/e962a03fbe15f830bd10e276b7ad3d5c4bac9ee3
https://github.com/toscawidgets/tw2.core/commit/c9e0ada6f2bb8955c2320dc873abb0adae35f186
https://github.com/toscawidgets/tw2.core/commit/b32a024c3d023237fade1b78e0553ee7960bfc33
https://github.com/toscawidgets/tw2.core/commit/5b1c1dadf66ea298a08b6c1072c7e2ff3eb7e8eb
https://github.com/toscawidgets/tw2.core/commit/d3d2aeb35a973e75c947ff9ecae9d9350b51ea60
https://github.com/toscawidgets/tw2.core/commit/4f0d496fc671d06bc0b0aceab2625e2e8360eb88
https://github.com/toscawidgets/tw2.core/commit/ea7637a20c422c91e0454040d48af1e6182aad4b
https://github.com/toscawidgets/tw2.core/commit/204e20fbdec27672547f26b19f0fc3eccbee3df0
https://github.com/toscawidgets/tw2.core/commit/28e458fe448466631848fcacba35be467dab7e27
https://github.com/toscawidgets/tw2.core/commit/ce4f813e72449abca9b205b21143fae452c52cd1
https://github.com/toscawidgets/tw2.core/commit/34fee8fa9095b00614a94e21b99e5cf46484ae25
https://github.com/toscawidgets/tw2.core/commit/8e9414ae081e62ee191ad9e2783c149f5583fa97
https://github.com/toscawidgets/tw2.core/commit/abc5b41611756e64b7661a4b2df6fe1d93bc19e2
https://github.com/toscawidgets/tw2.core/commit/56ce437ef3ffac6aa33a92b4c56c3186ebc10b84
https://github.com/toscawidgets/tw2.core/commit/0f4b81113b7d24cd795888ee01d67ba973bf9e8a
https://github.com/toscawidgets/tw2.core/commit/4da3364971f0c76604c595ae4e840f474633d06f
https://github.com/toscawidgets/tw2.core/commit/832435945ffcdcb5608225d38e7262d09c16ce01
https://github.com/toscawidgets/tw2.core/commit/66e93b66d89a8670d4763560eb34ade94e15195c
https://github.com/toscawidgets/tw2.core/commit/ca02d9713caeb773179b4163eedc07f8fe6775d3
https://github.com/toscawidgets/tw2.core/commit/b504714da536dc7e1603349b7c987989485a1a77

ToscaWidgets2 Documentation, Release 2.2.9

• Revert “Use mirrors for travis.” 9fc882050

• Fixed mako and genshi problems in new templating system found by testing against tw2.devtools. 41b8e5264

• Version bump – 2.1.0a ft. templating system rewrite. c89009332

• Ship new templates with the source dist. 2fb6cf8da

• Attribute filename for jinja and kajiki. d130c3c9f

• Provide an option for WidgetTest to exclude engines. c822b2a66

• 2.1.0a4 - Fix bug in automatic resource registration. efcd51724

• Support template inheritance at Rene van Paassen’s request. fc58e929a

• Version bump for template inheritance. 6b6658870

• Fix required Keyword for Date*Validators 14196d9ce

• Bridge the tw2/formencode API divide. 547357c7f

• Make rendering_extension_lookup propagate up to templating layer 8d89dabd8

• Added test for #30. Oddly, it passes 7d1d83852

• Trying even harder to test #30. b66b59ff5

• Version bump to 2.1.0b1. 3483107a6

• Puny py2.5 has no context managers. cb1e821c8

• PEP8. Cosmetic. 50d88cc93

• Future-proofing. @amol- is a rockstar. bb006dfeb

• Conform with formencode. Fixes #28. f3bf2a821

• Improve handling of template path names under Windows. e2bbeb29c

• Borrowed backport of os.path.relpath for py2.5. Related to #30. f29337629

• Whoops. Forgot to use the new relpath. #30. f308bef92

• Use util.relpath instead of os.path.relpath. 3c302eaac

• .req() returns the validated widget is one exists. be8f39404

• Use **kw even when pulling in the validated widget. f78492be9

• Trying to duplicate an issue with Deferred. cefbbfd73

• Tests for #41. 7c61047b9

• Handle arguments to display() called as instance method. 86894492d

• Cosmetic. b94180f25

• Found the failing test for @amol-‘s case. 284c66a38

• Allow Deferred as kwarg to .display(). d4c6dcfc6

• Second beta 2.1.0b2 to verify some bugfixes. b6ff67ab7

• Failing test for Deferred. d26389d13

• @amol-‘s fix for the Deferred subclassing problem. c08c0508b

• 2.1.0. 725fd6aba

• Fixup copyright date bc509ca66

1.7. Changelog 55

https://github.com/toscawidgets/tw2.core/commit/9fc8820509518b6af112c69dea3a9c5e70a13c15
https://github.com/toscawidgets/tw2.core/commit/41b8e52649683333857dbf36bef583c9ae57b736
https://github.com/toscawidgets/tw2.core/commit/c890093324aef0df7b5ffc47f1c74cab2063dd05
https://github.com/toscawidgets/tw2.core/commit/2fb6cf8dadef8ca890fabf9b3b5445c6d1c9e51c
https://github.com/toscawidgets/tw2.core/commit/d130c3c9f17e13984bc9d28d3601dcfdfa5f6ca6
https://github.com/toscawidgets/tw2.core/commit/c822b2a6699c98a87bf7dbe9510d7709c023b5d0
https://github.com/toscawidgets/tw2.core/commit/efcd51724cb4bd7360ece576d9cc195c442c8944
https://github.com/toscawidgets/tw2.core/commit/fc58e929ac6cd04eb3bb698eff9249f97b85d31c
https://github.com/toscawidgets/tw2.core/commit/6b6658870485299cde517788b59e3917cf25666e
https://github.com/toscawidgets/tw2.core/commit/14196d9ce4a3e427c9d5e07073f695acf2d074c4
https://github.com/toscawidgets/tw2.core/commit/547357c7fa9bc51dc7e8d47d44bbc4d56f1372af
https://github.com/toscawidgets/tw2.core/commit/8d89dabd8a675c6d6e7d677588f436dab38048ee
https://github.com/toscawidgets/tw2.core/commit/7d1d83852d4790c1b2c17ee03941e7dbb1faeb9a
https://github.com/toscawidgets/tw2.core/commit/b66b59ff512b70e0bb4237bf14c85898d0626bb1
https://github.com/toscawidgets/tw2.core/commit/3483107a6320fca2595c76ecff60be9762318649
https://github.com/toscawidgets/tw2.core/commit/cb1e821c87e8b44d9da7c52c9e0812d8b391d048
https://github.com/toscawidgets/tw2.core/commit/50d88cc9326b470326d04b7983f81e3982338662
https://github.com/toscawidgets/tw2.core/commit/bb006dfeb5107fb3fb1e43eb5128c205d1b3867b
https://github.com/toscawidgets/tw2.core/commit/f3bf2a821e1f9f7730e8ea8441918d063d1a5025
https://github.com/toscawidgets/tw2.core/commit/e2bbeb29ce6c193bb319a129a83616585484adb1
https://github.com/toscawidgets/tw2.core/commit/f293376292ad703d9860c242d965535c28a76ac4
https://github.com/toscawidgets/tw2.core/commit/f308bef9232817c1edf072c8370ef823e5a481da
https://github.com/toscawidgets/tw2.core/commit/3c302eaac3c4eac565138be652d5be3e60c64421
https://github.com/toscawidgets/tw2.core/commit/be8f39404c585f44ffb9333e1aa0f2e82ee951e5
https://github.com/toscawidgets/tw2.core/commit/f78492be9406335cead45da79e429ffbf48efdce
https://github.com/toscawidgets/tw2.core/commit/cefbbfd739c1b803039a9dded72098db8fc540b3
https://github.com/toscawidgets/tw2.core/commit/7c61047b9585e0f4a584a4c7389d213f2f3a24d4
https://github.com/toscawidgets/tw2.core/commit/86894492d5c1565c7d49747bde8f5c848dbc9b61
https://github.com/toscawidgets/tw2.core/commit/b94180f25b41f4f6c73a115bc6456c4f23b4ce6c
https://github.com/toscawidgets/tw2.core/commit/284c66a386a4cb76c351ec6b6dd21fcf229080e3
https://github.com/toscawidgets/tw2.core/commit/d4c6dcfc68d46e7dc6c384ee0524d1fdce951aa2
https://github.com/toscawidgets/tw2.core/commit/b6ff67ab72fd3ac8dd7544af98b66ee83bd27413
https://github.com/toscawidgets/tw2.core/commit/d26389d13e498a90ba625189c41e79e932244b48
https://github.com/toscawidgets/tw2.core/commit/c08c0508b07643fc0e1bbf99f5a7a9866e05edc3
https://github.com/toscawidgets/tw2.core/commit/725fd6aba59553222d7e7ca1be34ba27ae5f4f43
https://github.com/toscawidgets/tw2.core/commit/bc509ca66c861c16702efa4990067d93e63c1dd3

ToscaWidgets2 Documentation, Release 2.2.9

• avoid issues with unicode error messages b5a314de7

• Link to rtfd from README. 1269dff73

• Added jinja filter to take care of special case html bolean attributes such as radio checked} da25dbfaf

• Added htmlbools filter to jinja templates fb00eac66

• Fixed corner case which produced harmless but incorrect output if the special case attribute value is False
38a4505b8

• Merge pull request #48 from clsdaniel/develop 270784d5a

• Removed commented-out lines. 55af65d6c

• 2.1.1 for jinja updates and misc bugfixes. 0ff5ffcd2

• Since 2.0 autoescaping in widgets got lost due to new templates management 59f478fb5

• Mark attrs as Markup to avoid double escaping 5e138ace2

• Mark as already escape JSFuncCall too and update test to check the result for all the template engines 7c0c60ae2

• Merge pull request #49 from amol-/develop f6a3dda84

• Add proper escaping for JS and CSS sources af6d233df

• Merge pull request #50 from amol-/develop e99f82879

• Provide a Widget compound_key make available a compound_key attribute which can be used by tw2.forms as
the default value for FormField name argument ee571a215

• Version bump, 2.1.2. 1b64e3f83

• Allow inline templates with no markup. de19fa2b3

• PEP8. c2da40a1b

• Test that reveals a bug in tw2.jqplugins. 6a88d0413

• Do not translate empty strings, this does not work. e4f29829d

• Merge pull request #53 from Cito/develop 168f2727f

• Add translations and passing lang via middleware a10a14e26

• Merge pull request #59 from Cito/develop cbf603238

• Inject CSS/JSSource only once. ae13c369a

• Merge pull request #61 from Cito/develop bb5c2a225

• Test blank validator for both None and empty string. 1167286c3

• Add some more translations. 32374168d

• Merge pull request #64 from Cito/develop 50fc09a24

• Fix #63. df2920d83

• Added a note about the add_call method to the design doc. e901b1243

• Reference js_* docstrings from design doc. Fixes #58. 55001c742

• General docs cleanup. 144d5cfbb

• Fix broken links to tw2.core-docs-pyramid 14e5223e2

• Fix broken links to tw2.core-docs-turbogears 55a333b1c

• Merge pull request #66 from lukasgraf/lg-doc-url-fixes 4d123d0b1

56 Chapter 1. Content

https://github.com/toscawidgets/tw2.core/commit/b5a314de760e3e4809cc0056ab4af2422e71a775
https://github.com/toscawidgets/tw2.core/commit/1269dff73c670150d5498b8707e1d2fa5233ffe4
https://github.com/toscawidgets/tw2.core/commit/da25dbfafda1a593aa01bc01a31ef1c1c7bfd89f
https://github.com/toscawidgets/tw2.core/commit/fb00eac669c5fca1fe177e054e503faabbd14a0a
https://github.com/toscawidgets/tw2.core/commit/38a4505b89b232b8283e675c514d040750b2e516
https://github.com/toscawidgets/tw2.core/commit/270784d5a339e2402a0cf5234e668028ed3a3a3f
https://github.com/toscawidgets/tw2.core/commit/55af65d6c95107450187be0df4e5c0bc65a9d0bd
https://github.com/toscawidgets/tw2.core/commit/0ff5ffcd26b731e511b6b51b250190f6de962cec
https://github.com/toscawidgets/tw2.core/commit/59f478fb5471e11bdc34903df69e924060616c5f
https://github.com/toscawidgets/tw2.core/commit/5e138ace2c90cb07f09fb577f3f70e251a1deba2
https://github.com/toscawidgets/tw2.core/commit/7c0c60ae24006e84f44f788224d08f7b68428759
https://github.com/toscawidgets/tw2.core/commit/f6a3dda8411307c990b2d62c2de040c92532985f
https://github.com/toscawidgets/tw2.core/commit/af6d233dfa71bbf470d5e3e3f266a00978ba69f6
https://github.com/toscawidgets/tw2.core/commit/e99f82879532f012b43554bd4ad2784ba9702a3e
https://github.com/toscawidgets/tw2.core/commit/ee571a215267de2da2b663e74417b7cb2509ecf0
https://github.com/toscawidgets/tw2.core/commit/1b64e3f836d6704661e8873f1213df78399c3d87
https://github.com/toscawidgets/tw2.core/commit/de19fa2b355c2dec46a520ab4e6e0682177f29cf
https://github.com/toscawidgets/tw2.core/commit/c2da40a1b528e6cc48ff2ae7b90ce67f831d0b9a
https://github.com/toscawidgets/tw2.core/commit/6a88d0413a0ec4972cb72c0e22f36a23e9a7c3ae
https://github.com/toscawidgets/tw2.core/commit/e4f29829d6362902b297bc841e753d1bd3c4c055
https://github.com/toscawidgets/tw2.core/commit/168f2727f93a80ee832fe1d8bc0616ec44be0fe0
https://github.com/toscawidgets/tw2.core/commit/a10a14e260aa0f459d8586f4066c7c2519a2f58c
https://github.com/toscawidgets/tw2.core/commit/cbf603238ddc9b0f2b201fe5e5a927c8d65473ba
https://github.com/toscawidgets/tw2.core/commit/ae13c369a552cb71c1156a817412582f6454406f
https://github.com/toscawidgets/tw2.core/commit/bb5c2a225a739c7cf7434dcca20623a3bdef2f0b
https://github.com/toscawidgets/tw2.core/commit/1167286c392b6dc7e0a09972006c4b8ae5a36300
https://github.com/toscawidgets/tw2.core/commit/32374168d79f00b15c59ff0696b6b3d238ab0f30
https://github.com/toscawidgets/tw2.core/commit/50fc09a24d888d12e711f4ccda0e39b0bba1a7fe
https://github.com/toscawidgets/tw2.core/commit/df2920d83de2366993334f581744fede2877600b
https://github.com/toscawidgets/tw2.core/commit/e901b124342b73ad69cf5210fdb9dadd008d4d0a
https://github.com/toscawidgets/tw2.core/commit/55001c742bb3d3df56ef8d5eef806feac1c66869
https://github.com/toscawidgets/tw2.core/commit/144d5cfbb63e85b37bb9786cdc6bd71f4a1f0e99
https://github.com/toscawidgets/tw2.core/commit/14e5223e2b4e8c6a2f75060331b036a0ad34a799
https://github.com/toscawidgets/tw2.core/commit/55a333b1c6b2959e600d5d0ba99edcf582226919
https://github.com/toscawidgets/tw2.core/commit/4d123d0b1d6636c43d8cf3e6bbe6512f5954a012

ToscaWidgets2 Documentation, Release 2.2.9

• provide compatibility with formencode validators c382eed46

• Merge pull request #71 from amol-/develop 65b9550ca

• Link to github bug tracker from docs. Fixes #67. f849b5d03

• pass on state value in validation. 7c6791d80

• Updated pyramid docs. Fixes #23. 9547108fb

• Don’t let add_call pile-up new js resources. f1d698c55

1.7. Changelog 57

https://github.com/toscawidgets/tw2.core/commit/c382eed46d8339ceb75440ed4d998abf1160a150
https://github.com/toscawidgets/tw2.core/commit/65b9550ca12c97df850bc7941de87501e5cb2346
https://github.com/toscawidgets/tw2.core/commit/f849b5d035206069399fef978eb3e4c02c63ea45
https://github.com/toscawidgets/tw2.core/commit/7c6791d802f854b8b1708e0928e24b889726989f
https://github.com/toscawidgets/tw2.core/commit/9547108fbf90cc84983f9a069d0fedea83aa1c07
https://github.com/toscawidgets/tw2.core/commit/f1d698c5500bb14799845c332e4fd81906e21949

ToscaWidgets2 Documentation, Release 2.2.9

58 Chapter 1. Content

CHAPTER 2

Online Resources

ToscaWidgets, as it was originall born from TurboGears Widgets, shares many online resources with TurboGears. If
you have questions on how to use TW2 feel free to ask them in TurboGears channel or Mailing List.

• Bug tracker: GitHub.

• Gitter Channel: TurboGears Channel

• Mailing List: TurboGears Users

59

https://github.com/toscawidgets/tw2.core/issues
https://gitter.im/turbogears/Lobby
http://groups.google.com/group/turbogears

ToscaWidgets2 Documentation, Release 2.2.9

60 Chapter 2. Online Resources

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

61

ToscaWidgets2 Documentation, Release 2.2.9

62 Chapter 3. Indices and tables

Python Module Index

t
tw2.core.js, 34
tw2.core.resources, 11
tw2.core.validation, 30
tw2.core.widgets, 8
tw2.forms.widgets, 19

63

ToscaWidgets2 Documentation, Release 2.2.9

64 Python Module Index

Index

A
add_call (tw2.core.widgets.Widget attribute), 8
All (class in tw2.core.validation), 32
Any (class in tw2.core.validation), 32
autofocus (tw2.forms.widgets.InputField attribute),

20

B
BaseLayout (class in tw2.forms.widgets), 18, 24
BlankValidator (class in tw2.core.validation), 31
BoolValidator (class in tw2.core.validation), 31
Button (class in tw2.forms.widgets), 21

C
catch (in module tw2.core.validation), 30
CheckBox (class in tw2.forms.widgets), 20
CheckBoxList (class in tw2.forms.widgets), 24
CheckBoxTable (class in tw2.forms.widgets), 24
checked (tw2.forms.widgets.RadioButton attribute), 20
child (tw2.forms.widgets.GridLayout attribute), 19, 25
child (tw2.forms.widgets.ListFieldSet attribute), 26
child (tw2.forms.widgets.ListForm attribute), 26
child (tw2.forms.widgets.TableFieldSet attribute), 26
child (tw2.forms.widgets.TableForm attribute), 26
ColorField (class in tw2.forms.widgets), 22
cols (tw2.forms.widgets.TextArea attribute), 20
CompoundValidator (class in tw2.core.validation),

32
CompoundWidget (class in tw2.core.widgets), 9
Config (class in tw2.core.middleware), 4
controller_path (tw2.core.widgets.Widget at-

tribute), 8
CSSLink (class in tw2.core.resources), 12
CSSSource (class in tw2.core.resources), 12

D
DateTimeValidator (class in tw2.core.validation),

31
DateValidator (class in tw2.core.validation), 32

Deferred (class in tw2.core), 10
DirLink (class in tw2.core.resources), 12
display (tw2.core.widgets.Widget attribute), 8
DisplayOnlyWidget (class in tw2.core.widgets), 9

E
EmailField (class in tw2.forms.widgets), 22
EmailValidator (class in tw2.core.validation), 32

F
FieldSet (class in tw2.forms.widgets), 25
FileField (class in tw2.forms.widgets), 21
FileValidator (class in tw2.forms.widgets), 21
Form (class in tw2.forms.widgets), 14, 25
FormField (class in tw2.forms.widgets), 19
FormPage (class in tw2.forms.widgets), 26
from_python() (tw2.core.validation.Validator

method), 31

G
generate_output() (tw2.core.widgets.Widget

method), 8
get_link() (tw2.core.widgets.Widget class method), 8
GridLayout (class in tw2.forms.widgets), 19, 25
guess_modname() (tw2.core.resources.Link class

method), 11

H
HiddenField (class in tw2.forms.widgets), 21
HTML5MinMaxMixin (class in tw2.forms.widgets), 22
HTML5NumberMixin (class in tw2.forms.widgets), 22
HTML5PatternMixin (class in tw2.forms.widgets), 22
HTML5StepMixin (class in tw2.forms.widgets), 22

I
IgnoredField (class in tw2.forms.widgets), 21
ImageButton (class in tw2.forms.widgets), 22
InputField (class in tw2.forms.widgets), 19
IntValidator (class in tw2.core.validation), 31

65

ToscaWidgets2 Documentation, Release 2.2.9

IpAddressValidator (class in tw2.core.validation),
32

item_validator (tw2.forms.widgets.MultipleSelectionField
attribute), 23

iteritems() (tw2.core.widgets.Widget method), 8

J
js_callback (class in tw2.core.js), 34
js_function (class in tw2.core.js), 35
js_symbol (class in tw2.core.js), 36
JSLink (class in tw2.core.resources), 12
JSSource (class in tw2.core.resources), 12

L
Label (class in tw2.forms.widgets), 25
LabelField (class in tw2.forms.widgets), 21
LeafWidget (class in tw2.core.widgets), 9
LengthValidator (class in tw2.core.validation), 31
Link (class in tw2.core.resources), 11
LinkField (class in tw2.forms.widgets), 21
ListFieldSet (class in tw2.forms.widgets), 26
ListForm (class in tw2.forms.widgets), 26
ListLayout (class in tw2.forms.widgets), 18, 24
ListLengthValidator (class in

tw2.core.validation), 31

M
MatchValidator (class in tw2.core.validation), 32
maxlength (tw2.forms.widgets.TextFieldMixin at-

tribute), 19
message (tw2.core.validation.ValidationError at-

tribute), 30
MultipleSelectField (class in tw2.forms.widgets),

23
MultipleSelectionField (class in

tw2.forms.widgets), 23

N
name (tw2.forms.widgets.FormField attribute), 19
NumberField (class in tw2.forms.widgets), 22

O
OneOfValidator (class in tw2.core.validation), 31
options (tw2.forms.widgets.SelectionField attribute),

23

P
Page (class in tw2.core.widgets), 9
Param (class in tw2.core), 10
PasswordField (class in tw2.forms.widgets), 20
placeholder (tw2.forms.widgets.TextFieldMixin at-

tribute), 19
post_define() (tw2.core.resources.Link class

method), 12

post_define() (tw2.core.widgets.CompoundWidget
class method), 9

post_define() (tw2.core.widgets.DisplayOnlyWidget
class method), 9

post_define() (tw2.core.widgets.Page class
method), 9

post_define() (tw2.core.widgets.RepeatingWidget
class method), 9

post_define() (tw2.core.widgets.Widget class
method), 8

post_define() (tw2.forms.widgets.Form class
method), 14, 25

PostlabeledInputField (class in
tw2.forms.widgets), 20

prepare() (tw2.core.widgets.CompoundWidget
method), 9

prepare() (tw2.core.widgets.DisplayOnlyWidget
method), 9

prepare() (tw2.core.widgets.RepeatingWidget
method), 9

prepare() (tw2.core.widgets.Widget method), 8
prepare() (tw2.forms.widgets.BaseLayout method),

18, 24
prepare() (tw2.forms.widgets.CheckBox method), 20
prepare() (tw2.forms.widgets.FileField method), 21
prepare() (tw2.forms.widgets.Form method), 15, 25
prepare() (tw2.forms.widgets.ImageButton method),

22
prepare() (tw2.forms.widgets.InputField method), 20
prepare() (tw2.forms.widgets.LinkField method), 21
prepare() (tw2.forms.widgets.MultipleSelectionField

method), 23
prepare() (tw2.forms.widgets.PasswordField

method), 20
prepare() (tw2.forms.widgets.RowLayout method),

19, 25
prepare() (tw2.forms.widgets.SelectionField method),

23
prepare() (tw2.forms.widgets.SelectionTable

method), 24
prepare() (tw2.forms.widgets.VerticalSelectionTable

method), 24
prompt_text (tw2.forms.widgets.SelectionField at-

tribute), 23

R
RadioButton (class in tw2.forms.widgets), 20
RadioButtonList (class in tw2.forms.widgets), 23
RadioButtonTable (class in tw2.forms.widgets), 24
RangeField (class in tw2.forms.widgets), 22
RangeValidator (class in tw2.core.validation), 31
RegexValidator (class in tw2.core.validation), 32
RepeatingWidget (class in tw2.core.widgets), 9
req() (tw2.core.widgets.Widget class method), 8

66 Index

ToscaWidgets2 Documentation, Release 2.2.9

required (tw2.forms.widgets.FormField attribute), 19
required (tw2.forms.widgets.InputField attribute), 19
ResetButton (class in tw2.forms.widgets), 21
Resource (class in tw2.core.resources), 11
ResourceBundle (class in tw2.core.resources), 11
RowLayout (class in tw2.forms.widgets), 19, 25
rows (tw2.forms.widgets.TextArea attribute), 20

S
SearchField (class in tw2.forms.widgets), 22
SelectionField (class in tw2.forms.widgets), 22
SelectionList (class in tw2.forms.widgets), 23
SelectionTable (class in tw2.forms.widgets), 24
SeparatedCheckBoxTable (class in

tw2.forms.widgets), 24
SeparatedRadioButtonTable (class in

tw2.forms.widgets), 24
SeparatedSelectionTable (class in

tw2.forms.widgets), 23
SingleSelectField (class in tw2.forms.widgets), 23
size (tw2.forms.widgets.MultipleSelectField attribute),

23
size (tw2.forms.widgets.TextField attribute), 20
Spacer (class in tw2.forms.widgets), 25
StringLengthValidator (class in

tw2.core.validation), 31
StripBlanks (class in tw2.forms.widgets), 25
submit (tw2.forms.widgets.Form attribute), 15, 25
submit (tw2.forms.widgets.ListForm attribute), 26
submit (tw2.forms.widgets.TableForm attribute), 26
SubmitButton (class in tw2.forms.widgets), 21

T
TableFieldSet (class in tw2.forms.widgets), 26
TableForm (class in tw2.forms.widgets), 26
TableLayout (class in tw2.forms.widgets), 19, 24
text (tw2.forms.widgets.PostlabeledInputField at-

tribute), 20
text_attrs (tw2.forms.widgets.PostlabeledInputField

attribute), 20
TextArea (class in tw2.forms.widgets), 20
TextField (class in tw2.forms.widgets), 20
TextFieldMixin (class in tw2.forms.widgets), 19
to_python() (tw2.core.validation.BlankValidator

method), 31
to_python() (tw2.core.validation.Validator method),

31
to_python() (tw2.forms.widgets.StripBlanks

method), 25
tw2.core.js (module), 34
tw2.core.resources (module), 11
tw2.core.validation (module), 30
tw2.core.widgets (module), 8
tw2.forms.widgets (module), 19

TwMiddleware (class in tw2.core.middleware), 4
type (tw2.forms.widgets.InputField attribute), 19

U
unflatten_params() (in module

tw2.core.validation), 30
UrlField (class in tw2.forms.widgets), 22
UrlValidator (class in tw2.core.validation), 32
UUIDValidator (class in tw2.core.validation), 32

V
validate() (tw2.core.widgets.Widget class method), 8
validate_python() (tw2.core.validation.Validator

method), 31
ValidationError, 30
Validator (class in tw2.core), 46
Validator (class in tw2.core.validation), 30
value (tw2.forms.widgets.InputField attribute), 19
VerticalCheckBoxTable (class in

tw2.forms.widgets), 24
VerticalRadioButtonTable (class in

tw2.forms.widgets), 24
VerticalSelectionTable (class in

tw2.forms.widgets), 24

W
Widget (class in tw2.core.widgets), 8

Index 67

	Content
	Getting Started
	Enabling ToscaWidgets
	Configuration Options

	Widgets
	Using Widgets
	Resources

	Forms
	Form
	Validating Forms
	Form Layout
	Bultin Form Fields

	Validation
	Validators
	Custom Validators
	Internationalization
	Builtin Validators

	Javascript Integration
	Javascript on Display
	Javascript Callbacks
	Builtin Javascript Helpers

	Design
	Widget Overview
	Widget Hierarchy
	Template
	Non-template Output
	Resources
	Declarative Instantiation
	Widgets as Controllers
	Validation
	General Considerations

	Changelog
	2.3.0
	2.2.9
	2.2.7
	2.2.6
	2.2.5
	2.2.4
	2.2.3
	2.2.2
	2.2.1
	2.2.0.8
	2.2.0.7
	2.2.0.6
	2.2.0.5
	2.2.0.4
	2.2.0.3
	2.2.0.2
	2.2.0.1
	2.2.0
	2.1.6
	2.1.5
	2.1.4
	2.1.3

	Online Resources
	Indices and tables
	Python Module Index
	Index

